#### Filter Results:

- Full text PDF available (110)

#### Publication Year

1952

2017

- This year (7)
- Last 5 years (75)
- Last 10 years (120)

#### Publication Type

#### Co-author

#### Publication Venue

#### Key Phrases

Learn More

To my family. Acknowledgments This book is a revised version of my Ph.D. thesis from the automatic control laboratory at ETH-Zurich, written during the years 2001 to 2002. My thesis advisors were Manfred Morari and Alberto Bemporad. Almost all the material presented in this book is extracted from work done jointly with them. I would like to express my… (More)

- Alberto Bemporad, Francesco Borrelli, Manfred Morari
- IEEE Trans. Automat. Contr.
- 2002

- Paolo Falcone, Francesco Borrelli, Jahan Asgari, H. Eric Tseng, Davor Hrovat
- IEEE Trans. Contr. Sys. Techn.
- 2007

—In this paper a Model Predictive Control (MPC) approach for controlling an Active Front Steering system in an autonomous vehicle is presented. At each time step a trajectory in assumed to be known over a finite horizon, and an MPC controller computes the front steering angle in order to follow the trajectory on slippery roads at the highest possible entry… (More)

- Francesco Borrelli, Tamás Keviczky
- IEEE Trans. Automat. Contr.
- 2008

— We consider a set of identical decoupled dynamical systems and a control problem where the performance index couples the behavior of the systems. The coupling is described through a communication graph where each system is a node and the control action at each node is only function of its state and the states of its neighbors. A distributed control design… (More)

- A. Bemporad, F. Borrelli, M. Morari
- 2000

In this paper we propose a procedure for synthesizing piecewise linear optimal controllers for hybrid systems and investigate conditions for closed-loop stability. Hybrid systems are modeled in discrete-time within the mixed logical dynamical (MLD) framework [8], or, equivalently [7], as piecewise affine (PWA) systems. A stabilizing controller is obtained… (More)

- Yudong Ma, Francesco Borrelli, Brandon Hencey, Brian Coffey, Sorin C. Bengea, Philip Haves
- IEEE Trans. Contr. Sys. Techn.
- 2012

—This brief presents a model-based predictive control (MPC) approach to building cooling systems with thermal energy storage. We focus on buildings equipped with a water tank used for actively storing cold water produced by a series of chillers. First, simplified models of chillers, cooling towers, thermal storage tanks, and buildings are developed and… (More)

- Alberto Bemporad, Francesco Borrelli, Manfred Morari
- IEEE Trans. Automat. Contr.
- 2003

— For discrete-time uncertain linear systems with constraints on inputs and states, we develop an approach to determine state feedback controllers based on a min-max control formulation. Robustness is achieved against additive norm-bounded input disturbances and/or polyhedral para-metric uncertainties in the state-space matrices. We show that the… (More)

- Mato Baotic, Francesco Borrelli, Alberto Bemporad, Manfred Morari
- SIAM J. Control and Optimization
- 2008

We consider constrained finite-time optimal control problems for discrete-time linear time-invariant systems with constraints on inputs and outputs based on linear and quadratic performance indices. The solution to such problems is a time-varying piecewise affine (PWA) state-feedback law and it can be computed by means of multi-parametric programming. By… (More)

- Tamás Keviczky, Francesco Borrelli, Gary J. Balas
- Automatica
- 2006

We present a detailed study on the design of decentralized Receding Horizon Control (RHC) schemes for decoupled systems. We formulate an optimal control problem for a set of dynamically decoupled systems where the cost function and constraints couple the dynamical behavior of the systems. The coupling is described through a graph where each system is a node… (More)

- Pascal Grieder, Francesco Borrelli, Fabio Danilo Torrisi, Manfred Morari
- Automatica
- 2004

This paper presents an efficient algorithin for coiiiput-ing the solution to the constrained infinite time linear quadratic regulator (CLQR) problem for discrete time systems. The algorithm coinbiiies multi-parametric quadratic programming with reachability analysis to obtain the optiinal piecewise affine (PWA) feedback law. The algorithm reduces the time… (More)