Francesca Tagliavini

Learn More
Collagen VI is a non-fibrillar collagen present in the extracellular matrix (ECM) as a complex polymer; the mainly expressed form is composed of α1, α2 and α3 chains; mutations in genes encoding these chains cause myopathies known as Ullrich congenital muscular dystrophy (UCMD), Bethlem myopathy (BM) and myosclerosis myopathy (MM). The collagen VI α6 chain(More)
Activation of Akt-mediated signaling pathways is crucial for survival, differentiation, and regeneration of muscle cells. A proteomic-based search for novel substrates of Akt was therefore undertaken in C(2)C(12) murine muscle cells exploiting protein characterization databases in combination with an anti-phospho-Akt substrate antibody. A Scansite database(More)
Collagen VI is an extracellular matrix protein expressed in several tissues including skeletal muscle. Mutations in COL6A genes cause Bethlem Myopathy (BM), Ullrich Congenital Muscular Dystrophy (UCMD) and Myosclerosis Myopathy (MM). Collagen VI deficiency causes increased opening of the mitochondrial permeability transition pore (mPTP), leading to(More)
Incomplete penetrance characterizes the two most frequent inherited optic neuropathies, Leber's Hereditary Optic Neuropathy (LHON) and dominant optic atrophy (DOA), due to genetic errors in the mitochondrial DNA (mtDNA) and the nuclear DNA (nDNA), respectively. For LHON, compelling evidence has accumulated on the complex interplay of mtDNA haplogroups and(More)
Ullrich congenital muscular dystrophy (UCMD) and Bethlem myopathy (BM) are inherited muscle diseases due to mutations in the genes encoding the extracellular matrix protein collagen (Col) VI. Opening of the cyclosporin A-sensitive mitochondrial permeability transition pore (PTP) is a causative event in disease pathogenesis, and a potential target for(More)
The four-and-half LIM domain protein 1 (FHL1) is highly expressed in skeletal and cardiac muscle. Mutations of the FHL1 gene have been associated with diverse chronic myopathies including reducing body myopathy, rigid spine syndrome (RSS), and Emery-Dreifuss muscular dystrophy. We investigated a family with a mutation (p.C150R) in the second LIM domain of(More)
Muscle biopsy in a neonate with features of Yunis Varón syndrome revealed a vacuolar myopathy with evidence of lysosomal storage disease. Similar vacuoles were also present in heart, cartilage, central nervous system and cultured fibroblasts. Although the histologic findings in the central nervous system resembled those of infantile acid maltase deficiency,(More)
Ullrich congenital muscular dystrophy and Bethlem myopathy are caused by mutations in collagen VI (ColVI) genes, which encode an extracellular matrix protein; yet, mitochondria play a major role in disease pathogenesis through a short circuit caused by inappropriate opening of the permeability transition pore, a high-conductance channel, which causes a(More)
Cell-extracellular matrix interaction plays a major role in maintaining the structural integrity of connective tissues and sensing changes in the biomechanical environment of cells. Collagen VI is a widely expressed non-fibrillar collagen, which regulates tissues homeostasis. The objective of the present investigation was to extend our understanding of the(More)
In response to injury, tendon fibroblasts are activated, migrate to the wound, and contribute to tissue repair by producing and organizing the extracellular matrix. Collagen VI is a microfibrillar collagen enriched in the pericellular matrix of tendon fibroblasts with a potential regulatory role in tendon repair mechanism. We investigated the molecular(More)