Learn More
Human T-cell leukemia virus type 1 (HTLV-1) codes for 9 alternatively spliced transcripts and 2 major regulatory proteins named Tax and Rex that function at the transcriptional and posttranscriptional levels, respectively. We investigated the temporal sequence of HTLV-1 gene expression in primary cells from infected patients using splice site-specific(More)
In this report, we analyzed whether the degradation of mRNAs by the nonsense-mediated mRNA decay (NMD) pathway was affected in human T-lymphotropic virus type 1 (HTLV-1)-infected cells. This pathway was indeed strongly inhibited in C91PL, HUT102, and MT2 cells, and such an effect was also observed by the sole expression of the Tax protein in Jurkat and HeLa(More)
HTLV-1 and HTLV-2 share broad similarities in their overall genetic organization and expression pattern, but they differ substantially in their pathogenic properties. This review outlines distinctive features of HTLV-1 and HTLV-2 that might provide clues to explain their distinct clinical outcomes. Differences in the kinetics of viral mRNA expression,(More)
Loss of menin, a tumor suppressor coded by the MEN1 gene, is a key factor in the pathogenesis of multiple endocrine neoplasia type I and in a percentage of sporadic endocrine tumors of the pancreas and parathyroid glands. This study investigated expression of the menin protein in the normal exocrine pancreas and in pancreatic ductal adenocarcinoma (PDAC),(More)
Human T cell leukemia virus types 1 and 2 (HTLV-1 and HTLV-2) are genetically related complex retroviruses that are capable of immortalizing human T-cells in vitro and establish life-long persistent infections in vivo. In spite of these apparent similarities, HTLV-1 and HTLV-2 exhibit a significantly different pathogenic potential. HTLV-1 is recognized as(More)
The discovery of human retroviruses in the early 1980s revealed the existence of viral-encoded non-structural genes that were not evident in previously described animal retroviruses. Based on the absence or presence of these additional genes retroviruses were classified as 'simple' and 'complex', respectively. Expression of most of these extra genes is(More)
Retrovirus HTLV-1 gene circuit is characterized by positive and negative feedback phenomena, thus candidating it as a potential relaxation oscillator deliverable into eukaryotes. Here we describe a model of HTLV-1 which, by providing predictions of genes and proteins kinetics, can be helpful for designing gene circuits for eukaryotes, or for optimizing gene(More)
Human T-cell leukemia virus types 1 and 2 (HTLV-1 and HTLV-2) are delta retroviruses that share a common overall genetic organization, splicing pattern, and ability to infect and immortalize T-cells in vitro. However, HTLV-1 and HTLV-2 exhibit a clearly distinct pathogenic potential in infected patients. To find clues to the possible viral determinants of(More)
Human T-cell leukemia virus types 1 and 2 (HTLV-1 and HTLV-2) are delta retroviruses with similar genetic organization. Although both viruses immortalize T-cells in vitro, they exhibit distinct pathogenic potential in vivo. To search for possible differences in its expression strategy with respect to HTLV-1, we investigated the pattern of HTLV-2 expression(More)
Like other complex retroviruses such as HIV-1, HTLV-1 encodes several regulatory and auxiliary non-structural proteins from overlapping open reading frames through the generation of alternatively spliced mRNAs. HTLV-1 expression is orchestrated by the Tax and Rex regulatory proteins; Tax drives the transcription of the viral genome, while Rex acts at the(More)