Francesca Mirri

Learn More
Transparent conductive carbon nanotube (CNT) films were fabricated by dip-coating solutions of pristine CNTs dissolved in chlorosulfonic acid (CSA) and then removing the CSA. The film performance and morphology (including alignment) were controlled by the CNT length, solution concentration, coating speed, and level of doping. Using long CNTs (∼10 μm),(More)
The diameter dependence of the collapse of single- and double-walled carbon nanotubes to two- and four-walled graphene nanoribbons with closed edges (CE(x)GNRs) has been experimentally determined and compared to theory. TEM and AFM were used to characterize nanotubes grown from preformed 4.0 nm diameter aluminum-iron oxide particles. Experimental data(More)
Attempts at depositing uniform films of nanoparticles by drop-drying have been frustrated by the "coffee-stain" effect due to convective macroscopic flow into the contact line. Here, we show that uniform deposition of nanoparticles in aqueous suspensions can be attained easily by drying the droplet in an ethanol vapor atmosphere. This technique allows the(More)
We report a simple and versatile technique for oriented assembly of gold nanorods on aligned single-walled carbon nanotube (SWNT) macrostructures, such as thin nanotube films and nanotube fibers. The deposition and assembly is accomplished via drop drying of dilute gold nanorod suspensions on SWNT macrostructures under ambient conditions. Guided by(More)
A novel dye-sensitized solar cell (DSSC) structure using vertically aligned single-walled carbon nanotubes (VASWCNTs) as the counter electrode has been developed. In this design, the VASWCNTs serve as a stable high surface area and highly active electrocatalytic counter-electrode that could be a promising alternative to the conventional Pt analogue.(More)
Graphene oxide (GO) sheets can form liquid crystals (LCs) in their aqueous dispersions that are more viscous with a stronger LC feature. In this work we combine the viscous LC-GO solution with the blade-coating technique to make GO films, for constructing graphene-based supercapacitors in a scalable way. Reduced GO (rGO) films are prepared by wet chemical(More)
Advances in roll-to-roll processing of graphene and carbon nanotubes have at last led to the continuous production of high-quality coatings and filaments, ushering in a wave of applications for flexible and wearable electronics, woven fabrics, and wires. These applications often require specific electrical properties, and hence precise control over material(More)
Flexible graphene-based thin film supercapacitors were made using carbon nanotube (CNT) films as current collectors and graphene films as electrodes. The graphene sheets were produced by simple electrochemical exfoliation, while the graphene films with controlled thickness were prepared by vacuum filtration. The solid-state supercapacitor was made by using(More)
Coaxial cables for data transmission are ubiquitous in telecommunications, aerospace, automotive, and robotics industries. Yet, the metals used to make commercial cables are unsuitably heavy and stiff. These undesirable traits are particularly problematic in aerospace applications, where weight is at a premium and flexibility is necessary to conform with(More)
  • 1