Francesca M Quattrocchio

Learn More
For more than a century, the biosynthesis of flavonoid pigments has been a favorite of scientists to study a wide variety of biological processes, such as inheritance and transposition, and has become one of the best-studied pathways in nature. The analysis of pigmentation continues to provide insights into new areas, such as the channeling and(More)
The petunia loci anthocyanin1 (an1), an2, an4, and an11 are required for the transcription of anthocyanin biosynthetic genes in floral organs. The an2 and an11 loci were recently cloned and shown to encode a MYB-domain transcriptional activator and a cytosolic WD40 protein, respectively. Here, we report the isolation of an1 by transposon tagging. an1(More)
The regulatory anthocyanin loci, an1, an2, an4 and an11 of Petunia hybrida, and r and c1 from Zea mays, control transcription of different sets of target genes. Both an2 and c1 encode a MYB-type protein. This study reports the isolation of a P. hybrida gene, jaf13, encoding a basic helix-loop-helix protein that, on the basis of sequence homology and(More)
In this study, we demonstrate that in petunia at least four regulatory genes (anthocyanin-1 [an1], an2, an4, and an11) control transcription of a subset of structural genes from the anthocyanin pathway by using a combination of RNA gel blot analysis, transcription run-on assays, and transient expression assays. an2- and an11- mutants could be transiently(More)
In petunia flowers, the loci an1, an2, and an11 control the pigmentation of the flower by stimulating the transcription of anthocyanin biosynthetic genes. The an1 and an2 locus were recently cloned and encode a basic helix-loop-helix (bHLH) and MYB-domain transcriptional activator, respectively. Here, we report the isolation of the an11 locus by transposon(More)
The Petunia hybrida genes ANTHOCYANIN1 (AN1) and AN2 encode transcription factors with a basic-helix-loop-helix (BHLH) and a MYB domain, respectively, that are required for anthocyanin synthesis and acidification of the vacuole in petal cells. Mutation of PH4 results in a bluer flower color, increased pH of petal extracts, and, in certain genetic(More)
Establishment of loss-of-function phenotypes is often a key step in determining the biological function of a gene. We describe a procedure to obtain mutant petunia plants in which a specific gene with known sequence is inactivated by the transposable element dTph1. Leaves are collected from batches of 1000 plants with highly active dTph1 elements, pooled(More)
ANTHOCYANIN1 (AN1) of petunia is a transcription factor of the basic helix-loop-helix (bHLH) family that is required for the synthesis of anthocyanin pigments. Here, we show that AN1 controls additional aspects of cell differentiation: the acidification of vacuoles in petal cells, and the size and morphology of cells in the seed coat epidermis. We(More)
The regulation of pH in cellular compartments is crucial for intracellular trafficking of vesicles and proteins and the transport of small molecules, including hormones. In endomembrane compartments, pH is regulated by vacuolar H+-ATPase (V-ATPase), which, in plants, act together with H+-pyrophosphatases (PPase), whereas distinct P-type H+-ATPases in the(More)
The shape and color of flowers are important for plant reproduction because they attract pollinators such as insects and birds. Therefore, it is thought that alterations in these traits may result in the attraction of different pollinators, genetic isolation, and ultimately, (sympatric) speciation. Petunia integrifolia and P. axillaris bear flowers with(More)