Francesca Leonori

Learn More
The dynamics of the radical-radical reaction O((3)P) + C(3)H(5) has been investigated by means of the crossed molecular beam technique with mass spectrometric detection at a collision energy of 73.0 kJ mol(-1); the reaction mechanism of the H-displacement channel has been elucidated, while experimental evidence of the occurrence of one or more C-C(More)
Soft ionization by low-energy, tunable electrons is implemented for the first time in crossed molecular beam reactive scattering experiments with mass-spectrometric detection. The power of the method, which permits the suppression of the dissociative ionization of interfering species, is exemplified with the study of the O((3)P)+C(2)H(2) multichannel(More)
The dynamics of the H-displacement channels in the reaction N(2D) + C2H6 have been investigated by the crossed molecular beam technique with mass spectrometric detection and time-of-flight analysis at two different collision energies (18.0 and 31.4 kJ mol(-1)). From the derived center-of-mass product angular and translational energy distributions the(More)
In this Perspective we highlight developments in the field of chemical reaction dynamics. Focus is on the advances recently made in the investigation of the dynamics of elementary multichannel radical-molecule and radical-radical reactions, as they have become possible using an improved crossed molecular beam scattering apparatus with universal(More)
The crossed molecular beam scattering technique with soft electron ionization (EI) is used to disentangle the complex dynamics of the polyatomic O(3P) + C2H4 reaction, which is of great relevance in combustion and atmospheric chemistry. Exploiting the newly developed capability of attaining universal product detection by using soft EI, at a collision energy(More)
The reaction between excited sulfur atoms, S((1)D), and the simplest alkene molecule, ethene, has been investigated in a complementary fashion in (a) crossed-beam dynamic experiments with mass spectrometric detection and time-of-flight (TOF) analysis at a collision energy of 37.0 kJ mol(-1), (b) low temperature kinetic experiments ranging from room(More)
We report direct experimental and theoretical evidence that, under single-collision conditions, the dominant product channels of the O((3)P) + propyne and O((3)P) + allene isomeric reactions lead in both cases to CO formation, but the coproducts are singlet ethylidene ((1)CH3CH) and singlet ethylene (CH2CH2), respectively. These data, which settle a(More)
We performed synergic experimental/theoretical studies on the mechanism of the O((3)P) + propyne reaction by combining crossed molecular beams experiments with mass-spectrometric detection and time-of-flight analysis at 9.2 kcal/mol collision energy (Ec) with ab initio electronic structure calculations at a high level of theory of the relevant triplet and(More)
The reaction between ground state oxygen atoms, O((3)P), and the acetylene molecule, C2H2, has been investigated in crossed molecular beam experiments with mass-spectrometric detection and time-of-flight analysis at three different collision energies, Ec = 34.4, 41.1 and 54.6 kJ mol(-1). From product angular and velocity distribution measurements of the(More)
The dynamics of the C + C2H2 reaction has been investigated using two crossed molecular beam apparatus of different concepts. Differential cross sections have been obtained for the C(3PJ) + C2H2(X1sigmag+) --> l/c-C3H + H(2S1/2) reaction in experiments conducted with pulsed supersonic beams and variable beam crossing angle configuration at two relative(More)