Francesca Gunnella

We don’t have enough information about this author to calculate their statistics. If you think this is an error let us know.
Learn More
BACKGROUND CONTEXT Bioresorbable calcium phosphate cement (CPC) may be suitable for vertebroplasty/kyphoplasty of osteoporotic vertebral fractures. However, additional targeted delivery of osteoinductive bone morphogenetic proteins (BMPs) in the CPC may be required to counteract the augmented local bone catabolism and support complete bone regeneration. (More)
BACKGROUND CONTEXT Large animal models are highly recommended for meaningful preclinical studies, including the optimization of cement augmentation for vertebral body defects by vertebroplasty/kyphoplasty. PURPOSE The aim of this study was to perform a systematic characterization of a strictly minimally invasive in vivo large animal model for lumbar(More)
BACKGROUND CONTEXT Injectable, brushite-forming calcium phosphate cements (CPC) show potential for bone replacement, but they exhibit low mechanical strength. This study tested a CPC reinforced with poly(l-lactide-co-glycolide) acid (PLGA) fibers in a minimally invasive, sheep lumbar vertebroplasty model. PURPOSE The study aimed to test the in vivo(More)
BACKGROUND CONTEXT Biodegradable calcium phosphate cement (CPC) represents a promising option for the surgical treatment of osteoporotic vertebral fractures. Because of augmented local bone catabolism, however, additional targeted delivery of bone morphogenetic proteins with the CPC may be needed to promote rapid and complete bone regeneration. PURPOSE In(More)
  • 1