Learn More
Penetration of the gut mucosa by pathogens expressing invasion genes is believed to occur mainly through specialized epithelial cells, called M cells, that are located in Peyer's patches. However, Salmonella typhimurium that are deficient in invasion genes encoded by Salmonella pathogenicity island 1 (SPI1) are still able to reach the spleen after oral(More)
Dendritic cells (DCs) are strong activators of primary T cell responses. Their priming ability is acquired upon encounter with maturation stimuli. To identify the genes that are differentially expressed upon maturation induced by exposure to Gram-negative bacteria, a kinetic study of DC gene expression was done with microarrays representing 11,000 genes and(More)
Cytomegalovirus (CMV), measles and HIV are the main human pathogens known to induce immunosuppression. Unlike measles and HIV, and despite the availability of a well studied animal model, little is known about the mechanisms that control CMV-induced immunosuppression. We hypothesized that dendritic cells (DCs), which are crucial in generating and(More)
The transport of Toll-like Receptors (TLRs) to various organelles has emerged as an essential means by which innate immunity is regulated. While most of our knowledge is restricted to regulators that promote the transport of newly synthesized receptors, the regulators that control TLR transport after microbial detection remain unknown. Here, we report that(More)
The signals controlling the checkpoints of dendritic cells (DC) maturation and the correlation between phenotypical and functional maturational stages were investigated in a defined model system of growth factor-dependent immature mouse DC. Three sequential stages of DC maturation (immature, mature, and apoptotic) were defined and characterized. Immature DC(More)
Dendritic cells are professional antigen-presenting cells able to initiate innate and adaptive immune responses against invading pathogens. In response to external stimuli dendritic cells undergo a complete genetic reprogramming that allows them to become, soon after activation, natural killer cell activators and subsequently T cell stimulators. The recent(More)
Immature and mature dendritic cells (DC) have been well characterized functionally and phenotypically. Microorganisms or bacterial products such as lipopolysaccharide (LPS) and inflammatory molecules, including tumor necrosis factor (TNF-alpha), are both believed to activate the DC maturation program which allows DC to initiate and amplify innate and(More)
Neuropathic pain remains a prevalent clinical problem because it is often poorly responsive to the currently used analgesics, thus it is crucial the identification of new potential targets and drugs. Recent evidence indicated that microglial cells in the spinal cord are critically involved in the development and maintenance of neuropathic pain, with a(More)
Microglial cells are non-professional antigen-presenting cells (APC) the function of which is still controversial. Here, we studied the function of microglia derived from H-2(u) mice. We show that these microglia express a low level of B7.2 and CD40 and, interestingly, lack surface expression of B7.1. Resting and IFN-gamma-activated microglia were unable to(More)
At the 38th Annual Meeting of the Society for Leukocyte Biology held in Oxford this year, the biology of dendritic cells (DCs) and macrophages was discussed. In particular, functional genomics approaches were presented to investigate transcriptional changes during microbe and phagocytes interactions. Here, we report functional genomics studies likely to be(More)