Learn More
Experimental studies have investigated the effects of chronic donepezil treatment on the behavioral deficits elicited by reduced activity or the loss of cholinergic neurons that occurs in aging or in models of dementia. However, few studies have analyzed the effects of chronic donepezil treatment on the cognitive functions of intact animals. The cognitive(More)
To analyze how search strategies are adapted according to the geometric distribution of food sources, the authors submitted rats to a search task in which they had to explore 9 food trays in an open field and avoid visiting already-depleted trays. Trays were spatially arranged in 4 independent configurations: a cross, a 3 x 3 matrix, 3 clusters of 3 trays(More)
The construct of brain and cognitive reserves holds that cognitive enrichment fosters the development of neuroplasticity properties, which permit normal cognitive functioning even in the presence of brain pathology. Interpreting the experience-dependent increase of neuronal connectivity and efficiency in the light of the reserve theory provides an(More)
Cerebellar compensation is a reliable model of lesion-induced plasticity occurring through profound synaptic and neurochemical modifications in cortical and sub-cortical regions. As the recovery from cerebellar deficits progresses, the firstly enhanced glutamate striatal transmission is then normalized. The time course of cerebellar compensation and the(More)
Ten dialysis-treated patients with hypercalcemia (11.5 +/- 0.3 mg/dl, mean +/- SE) due to renal osteodystrophy were compared with 30 control dialysis-treated patients who were not hypercalcemic (9.5 +/- 0.1 mg/dl). The hypercalcemic patients were more disabled than the control patients. Fifty percent of the hypercalcemic patients and 37 percent of the(More)
As major components of neuronal membranes, omega-3 polyunsaturated acids (n-3 PUFA) exhibit a wide range of regulatory functions, modulating from synaptic plasticity to neuroinflammation, from oxidative stress to neuroprotection. Recent human and animal studies indicated the n-3 PUFA neuroprotective properties in aging, with a clear negative correlation(More)
The molecular mechanism of environmental enrichment (EE) on brain function and anatomy has been partially attributed to the up-regulation of proteins involved in neuronal survival and activity-dependent plasticity, such as the neurotrophins nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF), in the cerebral cortex and hippocampus of(More)
To experimentally verify the reserve hypothesis, the influence of rearing conditions on the cognitive performances and on dendritic spines following basal forebrain lesions was analyzed. Adult rats reared in enriched or standard conditions were depleted of the cholinergic projection to the neocortex by 192 IgG-saporin injection into Ch4 region of basal(More)
Environmental enrichment is usually applied immediately after weaning or in adulthood, with strong effects on CNS anatomy and behavior. To examine the hypothesis that a pre-reproductive environmental enrichment of females could affect the motor development of their offspring, female rats were reared in an enriched environment from weaning to sexual(More)
Environmental enrichment (EE) is a widely used paradigm for investigating the influence of complex stimulations on brain and behavior. Here we examined whether pre-reproductive exposure to EE of female rats may influence their maternal care and offspring cognitive performances. To this aim, from weaning to breeding age enriched females (EF) were reared in(More)