Learn More
Reproduction cannot take place without the proper functioning of the lutropin/choriogonadotropin receptor (LHR). When the LHR does not work properly, ovulation does not occur in females and Leydig cells do not develop normally in the male. Also, because the LHR is essential for sustaining the elevated levels of progesterone needed to maintain pregnancy(More)
There is evidence for strong functional antagonistic interactions between adenosine A2A receptors (A2ARs) and dopamine D2 receptors (D2Rs). Although a close physical interaction between both receptors has recently been shown using co-immunoprecipitation and co-localization assays, the existence of a A2AR-D2R protein-protein interaction still had to be(More)
Emerging evidence shows that G protein-coupled receptors can form homo- and heteromers. These include adenosine A(2A) receptor-dopamine D(2) receptor heteromers, which are most probably localized in the dendritic spines of the striatopallidal GABAergic neurons, where they are in a position to modulate glutamatergic neurotransmission. The discovery of A(2A)(More)
Autophagy is a major protein degradation pathway, essential for stress-induced and constitutive protein turnover. In nervous tissue, autophagy is constitutively active and crucial to neuronal survival. The efficiency of the autophagic pathway reportedly undergoes age-related decline, and autophagy defects are observed in neurodegenerative diseases. Since(More)
Autophagy is the evolutionarily conserved degradation and recycling of cellular constituents. In mammals, autophagy is implicated in the pathogenesis of many neurodegenerative diseases. However, its involvement in acute brain damage is unknown. This study addresses the function of autophagy in neurodegeneration that has been induced by acute focal(More)
Adenosine A(2A) (A(2A)R) and dopamine D(2) (D(2)R) receptors mediate the antagonism between adenosinergic and dopaminergic transmission in striatopallidal GABAergic neurons and are pharmacological targets for the treatment of Parkinson's disease. Here, a family of heterobivalent ligands containing a D(2)R agonist and an A(2A)R antagonist linked through a(More)
Mitochondria are key organelles for the maintenance of life and death of the cell, and their morphology is controlled by continual and balanced fission and fusion dynamics. A balance between these events is mandatory for normal mitochondrial and neuronal function, and emerging evidence indicates that mitochondria undergo extensive fission at an early stage(More)
Formation of G protein-coupled receptors (GPCRs) into dimers and higher order oligomers represents a key mechanism in pleiotropic signaling, yet how individual protomers function within oligomers remains poorly understood. We present a super-resolution imaging approach, resolving single GPCR molecules to ∼ 8 nm resolution in functional asymmetric dimers and(More)
Fragment complementation is gaining an increasing impact as a nonperturbing method to probe noncovalent interactions within protein supersecondary structures. In this study, the fast Fourier transform rigid-body docking algorithm ZDOCK has been employed for in silico reconstitution of the calcium binding protein calbindin D9k, from its two EF-hands(More)
Alzheimer’s Disease (AD) is a progressive neurodegenerative disease, especially affecting the hippocampus. Impairment of cognitive and memory functions is associated with amyloid β-peptide-induced oxidative stress and alterations in lipid metabolism. In this scenario, the dual role of peroxisomes in producing and removing ROS, and their function in fatty(More)