Learn More
BACKGROUND AND AIM OF THE STUDY Adipose tissue is a readily available source of multipotent adult stem cells for use in tissue engineering and regenerative medicine. Adipose-derived stem cells (ADSCs) are currently being investigated as a source of interstitial cells to populate tissue-engineered heart valve constructs. However, the ability of these cells(More)
Membrane-bound sialidase NEU3, often referred to as the "ganglioside sialidase," has a critical regulatory function on the sialoglycosphingolipid pattern of the cell membrane, with an anti-apoptotic function, especially in cancer cells. Although other sialidases have been shown to be involved in skeletal muscle differentiation, the role of NEU3 had yet to(More)
Valve interstitial cells populate aortic valve cusps and have been implicated in aortic valve calcification. Here we investigate a common in vitro model for aortic valve calcification by characterizing nodule formation in porcine aortic valve interstitial cells (PAVICs) cultured in osteogenic (OST) medium supplemented with transforming growth factor beta 1(More)
A key challenge in tissue engineering a heart valve is to reproduce the major tissue structures responsible for native valve function. Here we evaluated human adipose-derived stem cells (ADSCs) as a source of cells for heart valve tissue engineering investigating their ability to synthesize and process collagen and elastin. ADSCs were compared with human(More)
Herein we combine chemical and mechanical stimulation to investigate the effects of vascular endothelial growth factor (VEGF) and physiological shear stress in promoting the differentiation human adipose derived stem cells (ADSCs) into endothelial cells. ADSCs were isolated and characterized; endothelial differentiation was promoted by culturing confluent(More)
Aim of this study was to provide an echocardiographic protocol for the description of the normal murine venous reservoir (atrium, appendage and pulmonary veins) and to investigate the possibility to use this approach to discriminate changes on left atrium (LA) and left atrial appendage (LAA) in a stress-induced model such us myocardial infarction. Global(More)
BACKGROUND The pericardial tissue is commonly used to produce bio-prosthetic cardiac valves and patches in cardiac surgery. The procedures adopted to prepare this tissue consist in treatment with aldehydes, which do not prevent post-graft tissue calcification due to incomplete xeno-antigens removal. The adoption of fixative-free decellularization protocols(More)
AIM Left ventricle (LV) regional fractional area change (RFAC) measured by cardiac magnetic resonance (CMR) allows the non-invasive localization and quantification of the degree of myocardial infarction (MI), and could be applied to assess the effectiveness of pharmacological or regenerative therapies. Here we investigate the ability of RFAC to identify(More)
GPR17 is a G(i) -coupled dual receptor activated by uracil-nucleotides and cysteinyl-leukotrienes. These mediators are massively released into hypoxic tissues. In the normal heart, GPR17 expression has been reported. By contrast, its role in myocardial ischaemia has not yet been assessed. In the present report, the expression of GPR17 was investigated in(More)
Cysteinyl leukotrienes (CysLTs) are potent lipid mediators widely known for their actions in asthma and in allergic rhinitis. Accumulating data highlights their involvement in a broader range of inflammation-associated diseases such as cancer, atopic dermatitis, rheumatoid arthritis, and cardiovascular diseases. The reported elevated levels of CysLTs in(More)