Francesca Chiaromonte

Learn More
The laboratory rat (Rattus norvegicus) is an indispensable tool in experimental medicine and drug development, having made inestimable contributions to human health. We report here the genome sequence of the Brown Norway (BN) rat strain. The sequence represents a high-quality 'draft' covering over 90% of the genome. The BN rat sequence is the third complete(More)
Advances in DNA sequencing technology have fueled a rapid increase in the number of sequenced vertebrate genomes, and we anticipate an explosion in the number of genomes sequenced in the near future. Detecting similarities between genomes is a valuable technique in discovering functional elements, and sequence alignment is the primary tool for discovering(More)
Six measures of evolutionary change in the human genome were studied, three derived from the aligned human and mouse genomes in conjunction with the Mouse Genome Sequencing Consortium, consisting of (1) nucleotide substitution per fourfold degenerate site in coding regions, (2) nucleotide substitution per site in relics of transposable elements active only(More)
Mutation rates of microsatellites vary greatly among loci. The causes of this heterogeneity remain largely enigmatic yet are crucial for understanding numerous human neurological diseases and genetic instability in cancer. In this first genome-wide study, the relative contributions of intrinsic features and regional genomic factors to the variation in(More)
The genetic structure of the indigenous hunter-gatherer peoples of southern Africa, the oldest known lineage of modern human, is important for understanding human diversity. Studies based on mitochondrial and small sets of nuclear markers have shown that these hunter-gatherers, known as Khoisan, San, or Bushmen, are genetically divergent from other humans.(More)
The parameters by which alignments are scored can strongly affect sensitivity and specificity of alignment procedures. While appropriate parameter choices are well understood for protein alignments, much less is known for genomic DNA sequences. We describe a straightforward approach to scoring nucleotide substitutions in genomic sequence alignments,(More)
Carbon (C) and nitrogen (N) metabolites can regulate gene expression in Arabidopsis thaliana. Here, we use multinetwork analysis of microarray data to identify molecular networks regulated by C and N in the Arabidopsis root system. We used the Arabidopsis whole genome Affymetrix gene chip to explore global gene expression responses in plants exposed(More)
The transcription factor GATA1 regulates an extensive program of gene activation and repression during erythroid development. However, the associated mechanisms, including the contributions of distal versus proximal cis-regulatory modules, co-occupancy with other transcription factors, and the effects of histone modifications, are poorly understood. We(More)
Techniques of comparative genomics are being used to identify candidate functional DNA sequences, and objective evaluations are needed to assess their effectiveness. Different analytical methods score distinctive features of whole-genome alignments among human, mouse, and rat to predict functional regions. We evaluated three of these methods for their(More)
We generalize the computation of the Regulatory Potential (RP) score from two-way alignments of human and mouse to three-way alignments of human, mouse, and rat. This requires overcoming technical challenges that arise because the complexity of the models underlying the score increases exponentially with the number of species. Despite the close evolutionary(More)