Francesca Ceragioli

Learn More
We consider continuous-time average consensus dynamics in which the agents' states are communicated through uniform quantizers. Solutions to the resulting system are defined in the Krasowskii sense and are proven to converge to conditions of " practical consensus ". To cope with undesired chattering phenomena we introduce a hysteretic quantizer, and we(More)
In this paper we consider the classical problem of stabilizing nonlinear systems in the case the control laws take values in a discrete set. First, we present a robust control approach to the problem. Then, we focus on the class of dissipative systems and rephrase classical results available for this class taking into account the constraint on the control(More)
This report studies a continuous-time version of the well-known Hegselmann-Krause model of opinion dynamics with bounded confidence. As the equations of this model have discontinuous right-hand side, we study their Krasovskii solutions. We present results about existence and completeness of solutions, and asymptotical convergence to equilibria featuring a "(More)
This paper deals with continuous-time opinion dynamics that feature the interplay of continuous opinions and discrete behaviours. In our model, the opinion of one individual is only influenced by the behaviours of fellow individuals. The key technical difficulty in the study of these dynamics is that the right-hand sides of the equations are dis-continuous(More)
— The problem of deploying continuous-time kine-matic agents on a line is considered. To achieve the prescribed formation each agent uses a binary information, namely whether the distance of the agent from a neighbor is below or above the prescribed inter-agent distance. A simple control law which achieves and maintains the formation despite the coarse(More)
  • 1