Francesca Ceragioli

Learn More
We study stability and stabilizability properties of systems with dis-continuous right hand-side (with solutions intended in Filippov's sense) by means of locally Lipschitz continuous and regular Lyapunov functions. The stability result is obtained in the more general context of differential inclusions. Concerning stabilizability, we focus on systems affine(More)
We consider continuous-time average consensus dynamics in which the agents' states are communicated through uniform quantizers. Solutions to the resulting system are defined in the Krasowskii sense and are proven to converge to conditions of " practical consensus ". To cope with undesired chattering phenomena we introduce a hysteretic quantizer, and we(More)
In this paper we consider the classical problem of stabilizing nonlinear systems in the case the control laws take values in a discrete set. First, we present a robust control approach to the problem. Then, we focus on the class of dissipative systems and rephrase classical results available for this class taking into account the constraint on the control(More)
A new convergence criterion for nonlinear systems was recently derived by the first author. The criterion is similar to Lyapunov's second theorem but differs in several respects. In particular, it has a remarkable convexity property in the context of control synthesis. While the set of control Lyapunov functions for a given system may not even be connected,(More)
Aknowledgements I am very pleased to have the opportunity here to express my sincere thanks to Professor Bacciotti who has guided me in the study of mathematics for five years, giving me confidence and transmitting his fondness for this discipline. Particular thanks also to Professor Conti. It has been really a pleasure to attend his course in Control(More)
In this paper we address the problem of characterizing the innnitesimal properties of functions which are non-increasing along all the trajectories of a diierential inclusion. In particular, we extend the condition based on the proximal gradient to the case of semi-continuous functions and Lipschitz continuous diierential inclusions. Moreover, we show that(More)
This report studies a continuous-time version of the well-known Hegselmann-Krause model of opinion dynamics with bounded confidence. As the equations of this model have discontinuous right-hand side, we study their Krasovskii solutions. We present results about existence and completeness of solutions, and asymptotical convergence to equilibria featuring a "(More)