Learn More
The prototype ferredoxin maquette, FdM, is a 16-amino acid peptide which efficiently incorporates a single [4Fe-4S]2+/+ cluster with spectroscopic and electrochemical properties that are typical of natural bacterial ferredoxins. Using this synthetic protein scaffold, we have investigated the role of the nonliganding amino acids in the assembly of the(More)
Bacterial resistance to almost all available antibiotics is an important public health issue. A major goal in antimicrobial drug discovery is the generation of new chemicals capable of killing pathogens with high selectivity, particularly multi-drug-resistant ones. Here we report the design, preparation and activity of new compounds based on a tunable,(More)
The structural features of protein binding sites for volatile anesthetics are being explored using a defined model system consisting of a four-alpha-helix bundle scaffold with a hydrophobic core. Earlier work has demonstrated that a prototype hydrophobic core is capable of binding the volatile anesthetic halothane. Exploratory work on the design of an(More)
Heme A, a prosthetic group of cytochrome c oxidase [EC], has been introduced into two de novo designed four helix bundle proteins, [H10A24](2) and [H10H24](2), known to bind 2-4 equiv of heme B, respectively [Robertson, D. E., Farid, R. S., Moser, C. C., Mulholland, S. E., Pidikiti, R., Lear, J. D., Wand, A., J., DeGrado, W. F., and Dutton, P. L.(More)
Most Gram-negative bacteria are susceptible to polymyxin B (PxB), and development of resistance to this cationic lipopeptide is very rare. PxB mechanism of action involves interaction with both the outer membrane (OM) and the inner membrane (IM) of bacteria. For the design of new antibiotics based on the structure of PxB and with improved therapeutic(More)
We have designed two alternative four helix bundle protein scaffold topologies for maquette construction to examine the effect of helix orientation on the heme binding and redox properties of our prototype heme protein maquette, (alpha-SS-alpha)2, previously described as H10H24 [Robertson, D. E., Farid, R. S., Moser, C. C., Mulholland, S. E., Pidikiti, R.,(More)
We report the construction of a synthetic flavo-heme protein that incorporates two major physiological activities of flavoproteins: light activation of flavin analogous to DNA photolyase and rapid intramolecular electron transfer between the flavin and heme cofactors as in several oxidoreductases. The functional tetra-alpha-helix protein comprises two 62-aa(More)
An emerging and attractive target for the treatment of Alzheimer's disease is to inhibit the aggregation of beta-amyloid protein (Abeta). We applied the retro-enantio concept to design an N-methylated peptidic inhibitor of the Abeta42 aggregation process. This inhibitor, inrD, as well as the corresponding all-L (inL) and all-D (inD) analogues were assayed(More)
A 16-amino acid residue peptide derived from a consensus motif of natural ferredoxins incorporates a tetranuclear iron sulfur cluster under physiological conditions. Successful assembly of the [4Fe-4S]2+/1+ cluster within a monomeric peptide was demonstrated using size exclusion chromatography, UV-visible, visible CD, and cryogenic EPR spectroscopies. The(More)
A maleimide nitroxide spin-label (MAL-6) linked to a cysteine in the hydrophobic core and a coproporphyrin I (CP) appended on the N-terminus of a synthetic helix-loop-helix peptide ([alpha2]) have been used to examine the designed self-association of a four-helix bundle ([alpha2]2), focusing on the bundle topology and stability and the rotational dynamics(More)