Frances N. Karanu

Learn More
A pool of stem cells that arise from the mesoderm during embryogenesis initiates hematopoiesis. However, factors that regulate the expansion of blood stem cells are poorly understood. We show here that cytokine-induced proliferation of primitive human hematopoietic cells could be inhibited with antibodies to hedgehog (Hh). Conversely, Sonic hedgehog (Shh)(More)
The Notch ligand, Jagged-1, plays an essential role in tissue formation during embryonic development of primitive organisms. However, little is known regarding the role of Jagged-1 in the regulation of tissue-specific stem cells or its function in humans. Here, we show that uncommitted human hematopoietic cells and cells that comprise the putative blood(More)
Recent evidence indicates that human hematopoietic stem cell properties can be found among cells lacking CD34 and lineage commitment markers (CD34(-)Lin(-)). A major barrier in the further characterization of human CD34(-) stem cells is the inability to detect this population using in vitro assays because these cells only demonstrate hematopoietic activity(More)
Delta-mediated Notch signaling controls cell fate decisions during invertebrate and murine development. However, in the human, functional roles for Delta have yet to be described. This study reports the characterization of Delta-1 and Delta-4 in the human. Human Delta-4 was found to be expressed in a wide range of adult and fetal tissues, including sites of(More)
The human hematopoietic stem cell compartment is comprised of repopulating CD34+ and CD34− cells. The interaction between these subsets with respect to their reconstitution capacity in vivo remains to be characterized. Here, lineage-depleted (Lin−) human CD34+ and CD34− hematopoietic cells were isolated from human male and female umbilical cord blood (CB)(More)
Recent reports indicate that activation of the Notch signaling pathway delays the differentiation of hematopoietic progenitors, suggesting that Notch may be used to develop novel ex vivo culture conditions for the expansion of primitive cells to be used in clinical transplantation. Here, we compare Notch expression and the effects of Jagged-1 treatment on(More)
Using murine models, primitive hematopoietic cells capable of repopulation have been shown to reside in various anatomic locations, including the aortic gonad mesonephros, fetal liver, and bone marrow. These sites are thought to be seeded by stem cells migrating through fetal circulation and would serve as ideal targets for in utero cellular therapy. In(More)
  • 1