Françoise Ruiz

Learn More
The duplication of entire genomes has long been recognized as having great potential for evolutionary novelties, but the mechanisms underlying their resolution through gene loss are poorly understood. Here we show that in the unicellular eukaryote Paramecium tetraurelia, a ciliate, most of the nearly 40,000 genes arose through at least three successive(More)
Microinjection at high copy number of plasmids containing only the coding region of a gene into the Paramecium somatic macronucleus led to a marked reduction in the expression of the corresponding endogenous gene(s). The silencing effect, which is stably maintained throughout vegetative growth, has been observed for all Paramecium genes examined so far: a(More)
BACKGROUND Ciliary or flagellar basal bodies and centrioles share the same architecture and remarkable property of duplicating once per cell cycle. Duplication is known to proceed by budding of the daugther organelle close to and at right angles to the mother structure, but the molecular basis of this geometry remains unknown. Among the handful of proteins(More)
The discovery of delta-tubulin, the fourth member of the tubulin superfamily, in Chlamydomonas [1] has led to the identification in the genomes of vertebrates and protozoa of putative delta homologues and of additional tubulins, epsilon and zeta [2-4]. These discoveries raise questions concerning the functions of these novel tubulins, their interactions(More)
First discovered in the fungus Aspergillus nidulans [1], g-tubulin is a ubiquitous component of microtubule organizing centres [2]. In centrosomes, g-tubulin has been immunolocalized at the pericentriolar material, suggesting a role in cytoplasmic microtubule nucleation [3], as well as within the centriole core itself [4]. Although its function in the(More)
The shape of a Paramecium is determined by the organization of its cortex which constitutes most of the cell cytoskeleton. These structures and networks are organized in relation to the approx. 4000 ciliary basal bodies present at the surface. Each basal body is the centre of a polarized and asymmetrical cortical unit. At the whole-cell level, all units are(More)
Within the superfamily of "EF-hand Ca2+-modulated proteins," centrins constitute a family of cytoskeletal proteins that are highly conserved from lower eukaryotes to man. Their cytoskeletal specialization is manifest in their capacity to form filamentous contractile arrays of various shapes and functions and by their association with microtubule organizing(More)
The infraciliary lattice, a contractile cortical cytoskeletal network of Paramecium, is composed of a small number of polypeptides including centrins. Its overall pattern reflects a hierarchy of structural complexity, from assembly and bundling of microfilaments to formation of polygonal meshes arranged in a continuous network subtending the whole cell(More)
The characterization of the two Paramecium gamma-tubulin genes, gammaPT1 and gammaPT2, allowed us to raise Paramecium-specific antibodies, directed against their most divergent carboxy-terminal peptide and to analyze the localization and dynamics of gamma-tubulin throughout the cell cycle. As in other cell types, a large proportion of the protein was found(More)
First discovered in the fungus Aspergillus nidulans[1], gamma-tubulin is a ubiquitous component of microtubule organizing centres [2]. In centrosomes, gamma-tubulin has been immunolocalized at the pericentriolar material, suggesting a role in cytoplasmic microtubule nucleation [3], as well as within the centriole core itself [4]. Although its function in(More)