Learn More
NH(4)(+) transport by the distal nephron and NH(4)(+) detoxification by the liver are critical for achieving regulation of acid-base balance and to avoid hyperammonemic hepatic encephalopathy, respectively. Therefore, it has been proposed that rhesus type B glycoprotein (Rhbg), a member of the Mep/Amt/Rh NH(3) channel superfamily, may be involved in some(More)
In the proximal tubule, the apical Na(+)/H(+) exchanger identified as NHE3 mediates most NaCl and NaHCO(3) absorption. The purpose of this study was to analyze the long-term regulation of NHE3 during alkalosis induced by dietary NaHCO(3) loading and changes in NaCl intake. Sprague-Dawley rats exposed to a low-NaCl, high-NaCl, or NaHCO(3) diet for 6 days(More)
The Na(+) concentration of the intracellular milieu is very low compared with the extracellular medium. Transport of Na(+) along this gradient is used to fuel secondary transport of many solutes, and thus plays a major role for most cell functions including the control of cell volume and resting membrane potential. Because of a continuous leak, Na(+) has to(More)
NaCl reabsorption in the medullary thick ascending limb of Henle (MTALH) contributes to NaCl balance and is also responsible for the creation of medullary interstitial hypertonicity. Despite the presence of angiotensin II subtype 1 (AT(1)) receptors in both the luminal and the basolateral plasma membranes of MTALH cells, no information is available on the(More)
INTRODUCTION In septic patients, an unpredictable response to epinephrine may be due to pharmacodynamic factors or to non-linear pharmacokinetics. The purpose of this study was to investigate the pharmacokinetics of epinephrine and its determinants in patients with septic shock. METHODS Thirty-eight consecutive adult patients with septic shock were(More)
  • 1