Françoise Goubin

Learn More
The Cdc25 A phosphatase is required for the G1-S transition of the cell cycle and is overexpressed in human cancers. We found that it is ubiquitylated and rapidly degraded by the proteasome and that its levels increase from G1 until mitosis. By treating cells with the DNA synthesis inhibitor hydroxyurea, Cdc25 A rapidly decreased in abundance, and this was(More)
It is known that the direct binding of the cyclin-dependent kinase (Cdk) inhibitor p21, also called Cdk-interacting protein 1 (p21), to proliferating cell nuclear antigen (PCNA) results in the inhibition of PCNA-dependent DNA synthesis. We provide evidence that p21 first inhibits the replication factor C-catalyzed loading of PCNA onto DNA and second(More)
Members of the recently discovered family of cyclin-dependent kinases inhibitors (CKIs) appear to play an essential regulatory role in the control of cell proliferation. To investigate the molecular basis of the interaction between these proteins and the cyclin-dependent kinases (CDKs), we performed a systematic mutagenesis of the CKI family member p21Cip1(More)
CDC25 dual-specificity phosphatases are essential regulators that activate cyclin-dependent kinases (CDKs) at critical stages of the cell cycle. In human cells, CDC25A and C are involved in the control of G1/S and G2/M respectively, whereas CDC25B is proposed to act both in S phase and G2/M. Evidence for an interaction between CDC25 phosphatases and members(More)
Fission yeast cells expressing the human gene encoding the cyclin-dependent kinase inhibitor protein p21Cip1 were severely compromised for cell cycle progress. The degree of cell cycle inhibition was related to the level of p21Cip1 expression. Inhibited cells had a 2C DNA content and were judged by cytology and pulsed field gel electrophoresis to be in the(More)
We studied the effect of verapamil on Pgp expression (Pgp) in MDR human leukemia cell lines, K562/ADR and CEM VLB100. In the K562/ADR cell line, addition of verapamil to the culture medium (15 microM concentration) resulted in a 3-fold decrease in Pgp expression after 72 hr exposure. The effect of verapamil was reversible, and Pgp expression reached the(More)
As essential cell cycle regulators, the CDC25 phosphatases are currently considered as potential targets for the development of novel therapeutic approaches. Here, we review the function and regulation of CDC25 phosphatases, their involvement in cancer and Alzheimer's disease, and the properties of several recently identified inhibitors.
We investigated the mechanism of verapamil (VRP) effects on mdr1 gene expression in two leukemic multidrug-resistant (MDR) cell lines, K562/ADR and CEM VLB100. Exposure to VRP for 24 hr resulted in a decrease in mdr1 mRNA levels that was dose related at concentrations between 15 and 50 microM. The maximal decrease of mdr1 mRNA levels was found to be 6-fold(More)
The cyclin-dependent kinase (CDK) inhibitor p21Cip1 consists of two domains that interact with CDKs and proliferating cell nuclear antigen (PCNA), respectively. We have investigated the interaction between p21Cip1 and PCNA using surface plasmon resonance (SPR) technology and compared the results with those obtained from other sources such as the yeast(More)
Calcium channel inhibitors, such as verapamil, have been identified as having the ability to modulate the multidrug-resistant (MDR) phenotype due to overexpression of P-glycoprotein (Pgp). We have studied the effect of verapamil on Pgp expression levels in a cell line originating from acute myeloblastic leukemia and resistant to adriamycin, K562/ADR. In(More)