Learn More
An optically transparent phantom was developed for use in high-intensity focused ultrasound (US), or HIFU, dosimetry studies. The phantom is composed of polyacrylamide hydrogel, embedded with bovine serum albumin (BSA) that becomes optically opaque when denatured. Acoustic and optical properties of the phantom were characterized as a function of BSA(More)
This study examined the feasibility of high-intensity focused ultrasound (HIFU) for glaucoma treatment with conformal coagulation of the ciliary bodies (CB). A miniaturized high frequency (21 MHz) device was developed, based on the geometry of the eye and adapted to the anatomy of the rabbit eyeball. Six line-focus lesions were distributed along a circle(More)
The accuracy of high-intensity focused ultrasound (HIFU) lesion prediction modelling was evaluated for a truncated spherical transducer designed for prostate cancer treatment The modelling adapted the bio heat transfer equation (BHTE) to take into account the activity of cavitation bubbles generated during HIFU exposure. This modelling was used to predict(More)
The aim of this study is to demonstrate the feasibility of a new spherically curved 1.5-D phased array for the treatment of localized prostatic cancer. The device is designed to conform to the Ablatherm machine (EDAP-Technomed, France), a commercially available machine in which high intensity focused ultrasound (HIFU) treatment for prostate cancer is(More)
Interstitial ultrasound applicators can be a minimally invasive alternative for treating targets that are unresectable or are inaccessible by extracorporeal methods. Dual-mode transducers for ultrasound imaging and therapy were developed to address the constraints of a miniaturized applicator and real-time treatment monitoring. We propose an original(More)
The study investigates a new sonication strategy with high-intensity focused ultrasound (HIFU), aiming for improvement of the original Ablatherm procedure in the prostate cancer treatment. The currently implemented and clinically used method (defined as reference) uses a single-element transducer, operated with 60% duty cycle. To implement the novel(More)
Treatment with high-intensity focused ultrasound is well established but requires extended treatment time. A device composed of 256 elements arranged on a toroidal transducer was developed to increase the coagulated volume. When all the elements are working in phase for 40 s, a volume of 6-8 cm(3) can be ablated. However, the mechanical juxtaposition of(More)
Interstitial thermal therapy is a minimally invasive treatment modality that has been used clinically for ablating both primary and secondary brain tumors. Here a multi-element interstitial ultrasound applicator is described that allows for increased spatial control during thermal ablation of tumors as compared to existing clinical devices. The device(More)
Existing methods for the modeling of piezoelectric transducer response are generally frequency domain-based. The major disadvantage of this type of model is that they cannot take into account the electrical elements present in the emitting or receiving circuit whose values vary with respect to time. The need for a method that accounts for time-varying(More)