Learn More
The direct liquefaction of a biomass composed of a mixture of wastes (straw, wood and grass) was studied using Nickel Raney as catalyst and tetralin as a solvent. Tetralin allows to solubilize green waste from 330°C at relatively low hydrogen pressure, and avoids the recondensation of the intermediate products. The green waste deoxygenation results mainly(More)
This paper describes a fully spectral, Polynomial Chaos method for the propagation of uncertainty in numerical simulations of compressible, turbulent flow, as well as a novel stochastic collocation algorithm for the same application. The stochastic collocation method is key to the efficient use of stochastic methods on problems with complex nonlinearities,(More)
This Letter investigates the compressible energy transfer process. We extend a methodology developed originally for incompressible turbulence and use databases from numerical simulations of a weak compressible turbulence based on Eddy-Damped-Quasi-Normal-Markovian (EDQNM) closure. In order to analyze the compressible mode directly, the well known Helmholtz(More)
Using a two-point closure theory, the eddy-damped-quasinormal-Markovian approximation, we have investigated the energy transfer process and triadic interactions of compressible turbulence. In order to analyze the compressible mode directly, the Helmholtz decomposition is used. The following issues were addressed: (1) What is the mechanism of energy exchange(More)
Using a two-point closure theory, the Eddy-Damped-Quasi-Normal-Markovian (EDQNM) approximation, we have investigated the energy transfer process and triadic interactions of compressible turbulence. In order to analyze the compressible mode directly, the Helmholtz decomposition is used. The following issues were addressed: (1) What is the mechanism of energy(More)
To protect surfaces against high temperatures, the blowing through a porous material is studied. The geometry is that of a circular cylinder in cross-flow and the effectiveness of the blowing for the thermal protection is numerically investigated. Two models are developed for the blowing simulation and comparisons are made with experimental data obtained in(More)
  • 1