François Pomerleau

Learn More
L-glutamate (Glu) is the predominant excitatory neurotransmitter in the mammalian central nervous system. It plays major roles in normal neurophysiology and many brain disorders by binding to membrane-bound Glu receptors. To overcome the spatial and temporal limitations encountered in previous in vivo extracellular Glu studies, we employed enzyme-coated(More)
l-glutamate (Glu) is the main excitatory neurotransmitter in the central nervous system (CNS) and is associated with motor behavior and sensory perception. While microdialysis methods have been used to record tonic levels of Glu, little is known about the more rapid changes in Glu signals that may be observed in awake rats. We have reported acute recording(More)
This paper describes improvements and further characterization of a ceramic-based multisite microelectrode for in vivo measurements of L-glutamate. Improvements include increased recording area, insulation deposition using photolithography for more uniform recording sites and forming the microelectrodes using a diamond saw providing smoother microelectrode(More)
Glutamate in the prefrontal cortex (PFC) plays a significant role in several mental illnesses, including schizophrenia, addiction and anxiety. Previous studies on PFC glutamate-mediated function have used techniques that raise questions on the neuronal versus astrocytic origin of glutamate. The present studies used enzyme-based microelectrode arrays to(More)
Conventional microdialysis methods for measuring acetylcholine (ACh) efflux do not provide sufficient temporal resolution to relate cholinergic transmission to individual stimuli or behavioral responses, or sufficient spatial resolution to investigate heterogeneities in such regulation within a brain region. In an effort to overcome these constraints, we(More)
BACKGROUND Neurotrophic factors, such as glial cell line-derived neurotrophic factor (GDNF), have shown great promise for protection and restoration of damaged or dying dopamine neurons in animal models and in some Parkinson's disease (PD) clinical trials. However, the delivery of neurotrophic factors to the brain is difficult due to their large size and(More)
The C-terminal fragment of human calcitonin gene-related peptide (CGRP), hCGRP8-37, fails to induce any biological activity in a variety of isolated tissues and behavioral assays even though it possesses nanomolar affinity for [125I]hCGRP alpha binding sites in the central nervous system and peripheral membrane preparations. However, hCGRP8-37 displays(More)
Microdialysis has been widely used to measure acetylcholine (ACh) release in vivo and has provided important insights into the regulation of cholinergic transmission. However, microdialysis can be constrained by limited spatial and temporal resolution. The present experiments utilize a microelectrode array (MEA) to rapidly measure ACh release and clearance(More)
In the present studies we used a multisite ceramic-based microelectrode for rapid (800 ms) and low level measures of L-glutamate in vivo. We measured the amplitude and clearance rate of phasic changes in L-glutamate release produced by local application of potassium by a micropipette placed adjacent to the recording sites in the striatum of young (6 month),(More)
l-Glutamate (Glu) is the main excitatory neurotransmitter in the mammalian central nervous system, and it is involved in most aspects of normal brain function, including cognition, memory and learning, plasticity, and motor movement. Although microdialysis techniques have been used to study Glu, the slow temporal resolution of the technique may be(More)