François Parcy

Learn More
In plants, basic region/leucine zipper motif (bZIP) transcription factors regulate processes including pathogen defence, light and stress signalling, seed maturation and flower development. The Arabidopsis genome sequence contains 75 distinct members of the bZIP family, of which approximately 50 are not described in the literature. Using common domains, the(More)
Arabidopsis abi3 mutants are altered in various aspects of seed development and germination that reflect a decreased responsiveness to the hormone abscisic acid. The ABI3 gene has been isolated by positional cloning. A detailed restriction fragment length polymorphism (RFLP) map of the abi3 region was constructed. An RFLP marker closely linked to the abi3(More)
JASPAR ( is the largest open-access database of matrix-based nucleotide profiles describing the binding preference of transcription factors from multiple species. The fifth major release greatly expands the heart of JASPAR-the JASPAR CORE subcollection, which contains curated, non-redundant profiles-with 135 new curated profiles(More)
The accumulation kinetics of 18 mRNAs were characterized during Arabidopsis silique development. These marker mRNAs could be grouped in distinct classes according to their coordinate temporal expression in the wild type and provided a basis for further characterization of the corresponding regulatory pathways. The abscisic acid (ABA)-insensitive abi3-4(More)
The initial steps of flower development involve two classes of consecutively acting regulatory genes. Meristem-identity genes, which act early to control the initiation of flowers, are expressed throughout the incipient floral primordium. Homeotic genes, which act later to specify the identity of individual floral organs, are expressed in distinct domains(More)
The homeotic gene AGAMOUS (AG) has dual roles in specifying organ fate and limiting stem cell proliferation in Arabidopsis flowers. We show that the floral identity protein LEAFY (LFY), a transcription factor expressed throughout the flower, cooperates with the homeodomain protein WUSCHEL (WUS) to activate AG in the center of flowers. WUS was previously(More)
In all land plants, cellulose is synthesized from hexameric plasma membrane complexes. Indirect evidence suggests that in vascular plants the complexes involved in primary wall synthesis contain three distinct cellulose synthase catalytic subunits (CESAs). In this study, we show that CESA3 and CESA6 fused to GFP are expressed in the same cells and at the(More)
Seeds represent the main source of nutrients for animals and humans, and knowledge of their biology provides tools for improving agricultural practices and managing genetic resources. There is also tremendous interest in using seeds as a sustainable alternative to fossil reserves for green chemistry. Seeds accumulate large amounts of storage compounds such(More)
The expression of seed storage proteins is under tight developmental regulation and represents a powerful model system to study the regulation of gene expression during plant development. In this study, we show that three homologous B3 type transcription factors regulate the model storage protein gene, At2S3, via two distinct mechanisms: FUSCA3 (FUS3) and(More)
In Arabidopsis, the basic leucine zipper transcription factor ABI5 activates several late embryogenesis-abundant genes, including AtEm1 and AtEm6. However, the expression of many other seed maturation genes is independent of ABI5. We investigated the possibility that ABI5 homologs also participate in the regulation of gene expression during seed maturation.(More)