François P Gallet

Learn More
Optical tweezers are used to apply calibrated forces to human erythrocytes, via small silica beads bound to their membrane. The shear modulus mu of the membrane is inferred from measurements of the cell deformation in the small strain linear regime. We find the same result mu = 2.5 +/- 0.4 microN/m for both discotic and nearly spherical swollen cells. This(More)
The area expansion and the shear moduli of the free spectrin skeleton, freshly extracted from the membrane of a human red blood cell (RBC), are measured by using optical tweezers micromanipulation. An RBC is trapped by three silica beads bound to its membrane. After extraction, the skeleton is deformed by applying calibrated forces to the beads. The area(More)
We compare and synthesize the results of two microrheological experiments on the cytoskeleton of single cells. In the first one, the creep function J(t) of a cell stretched between two glass plates is measured after applying a constant force step. In the second one, a microbead specifically bound to transmembrane receptors is driven by an oscillating(More)
BACKGROUND Regulation of intracellular trafficking is a central issue in cell biology. The forces acting on intracellular vesicles (endosomes) can be assessed in living cells by using a combination of active and passive microrheology. METHODOLOGY/PRINCIPAL FINDINGS This dual approach is based on endosome labeling with magnetic nanoparticles. The resulting(More)
We compare the measurements of viscoelastic properties of adherent alveolar epithelial cells by two micromanipulation techniques: (i) magnetic twisting cytometry and (ii) optical tweezers, using microbeads of same size and similarly attached to F-actin. The values of equivalent Young modulus E, derived from linear viscoelasticity theory, become consistent(More)
Living cells exhibit an important out-of-equilibrium mechanical activity, mainly due to the forces generated by molecular motors. These motor proteins, acting individually or collectively on the cytoskeleton, contribute to the violation of the fluctuation-dissipation theorem in living systems. In this work we probe the cytoskeletal out-of-equilibrium(More)
We present a direct experimental measurement of an effective temperature in a colloidal glass of laponite, using a micrometric bead as a thermometer. The nonequilibrium fluctuation-dissipation relation, in the particular form of a modified Einstein relation, is investigated with diffusion and mobility measurements of the bead embedded in the glass. We(More)
We have measured by optical tweezers micromanipulations the area expansion and the shear moduli of spectrin skeletons freshly extracted from human red blood cells, in different controlled salinity conditions. At medium osmolarity (150 mOsm/kg), we measure KC=9.7+/-3.4 microN/m, muC=5.7+/-2.3 microN/m, KC/muC=2.1+/-0.7. When decreasing the osmolarity, both(More)
We have determined the microrheological response of the actin meshwork for individual cells. We applied oscillating forces with an optical tweezer to a micrometric bead specifically bound to the actin meshwork of C2 myoblasts, and measured the amplitude and phase shift of the induced cell deformation. For a non-perturbed single cell, we have shown that the(More)
We investigate the dynamic response of single cells to weak and local rigidities, applied at controlled adhesion sites. Using multiple latex beads functionalized with fibronectin, and each trapped in its own optical trap, we study the reaction in real time of single 3T3 fibroblast cells to asymmetrical tensions in the tens of pN x microm(-1) range. We show(More)