François Mauguière

Luis Garcia-Larrea15
Marc Guénot12
Learn More
The cingulate cortex (CC) as a part of the "medial" pain subsystem is generally assumed to be involved in the affective and/or cognitive dimensions of pain processing, which are viewed as relatively slow processes compared with the sensory-discriminative pain coding by the lateral second somatosensory area (SII)-insular cortex. The present study aimed at(More)
Thalamic and cortical activities are assumed to be time-locked throughout all vigilance states. Using simultaneous intracortical and intrathalamic recordings, we demonstrate here that the thalamic deactivation occurring at sleep onset most often precedes that of the cortex by several minutes, whereas reactivation of both structures during awakening is(More)
The SII area and the posterior insular region are both activated by thermal stimuli in functional imaging studies. However, controversy remains as to a possible differential encoding of thermal intensity by each of these 2 contiguous areas. Using CO(2) laser stimulations, we analyzed the modifications induced by increasing thermal energy on evoked(More)
The amygdala involvement in fear processing has been reported in behavioral, electrophysiological, and functional imaging studies. However, the literature does not provide precise data on the temporal course of facial emotional processing. Intracranial event-related potentials to facial expressions were recorded in epileptic patients implanted with depth(More)
The human brain is expert in analyzing rapidly and precisely facial features, especially emotional expressions representing a powerful communication vector. The involvement of insula in disgust recognition has been reported in behavioral and functional imaging studies. However, we do not know whether specific insular fields are involved in disgust(More)
OBJECTIVE To localize the sources of mu, beta and gamma rhythms and to explore the functional significance of their reactivity. METHODS We used the method of quantification of event-related desynchronization (ERD) and synchronization (ERS) to analyze the reactivity of intracerebral rhythms recorded in stereoelectroencephalography within the sensorimotor(More)
Intracortical evoked potentials to nonnoxious Aβ (electrical) and noxious Aδ (laser) stimuli within the human primary somatosensory (S1) and motor (M1) areas were recorded from 71 electrode sites in 9 epileptic patients. All cortical sites responding to specific noxious inputs also responded to nonnoxious stimuli, while the reverse was not always true.(More)
Interictal spikes are a hallmark of cortical epileptogenicity; their spatial distribution in the cortex defines the so-called 'irritative' zone or spiking volume (SV). Delineating the SV precisely is a challenge during the presurgical evaluation of patients with epilepsy. Magnetoencephalography (MEG) recordings enable determination of the brain sources of(More)
Thanks to the seminal work of Wilder Graves Penfield (1891-1976) at the Montreal Neurological Institute, electrical stimulation is used worldwide to localize the epileptogenic cortex and to map the functionally eloquent areas in the context of epilepsy surgery or lesion resections. In the functional map of elementary and experiential responses he described(More)
The aim of our study was to assess abnormalities in 5-hydroxytryptamine-1A (5-HT1A) receptor density in patients suffering from refractory temporal lobe epilepsy (TLE). Experimental data in animals show that 5-HT1A receptors are predominantly located in limbic areas, and that serotonin, via these receptors, mediates an antiepileptic and anticonvulsant(More)