François Lallemand

Learn More
Ubiquitin-dependent degradation plays an important role in the negative regulation of TGF-beta signaling. Here, we identify Tiul1 (for TGIF interacting ubiquitin ligase 1), a novel E3 ubiquitin ligase that inhibits TGF-beta signaling by targeting both the activated receptor and Smad2 for degradation. Tiul1 associates constitutively with Smad7 and induces(More)
BACKGROUND Fermitin family member 1 (FERMT1, Kindlin-1) is an epithelial-specific regulator of integrin functions and is associated with Kindler syndrome, a genetic disorder characterized by skin blistering, atrophy, and photosensitivity. However, the possible role of kindlin-1 in cancer remains unknown. METHODS Kindlin-1 expression was quantified in(More)
Bone morphogenetic protein (BMP)-2, a member of the transforming growth factor-beta (TGF-beta) superfamily, is able to induce osteoblastic differentiation of C2C12 cells. Both Smad and mitogen-activated protein kinase (MAPK) pathways are essential components of the TGF-beta superfamily signaling machinery. Although Smads have been demonstrated to(More)
Smad7 functions as an intracellular antagonist in transforming growth factor-beta (TGF-beta) signaling. In addition to interacting stably with the activated TGF-beta type I receptor (TbetaRI) to prevent phosphorylation of the receptor-regulated Smads (Smad2 and Smad3), Smad7 also induces degradation of the activated TbetaRI through association with(More)
We conducted a cross-sectional study of 156 ambulatory HIV-infected homosexual or bisexual men to assess and compare the prevalence and characteristics of sexual dysfunction according to treatment combinations (group A, protease inhibitor [PI] treatment; group B, no PI treatment; and C, PI treatment interrupted >1 month previously). The study was based on a(More)
Members of the TGF-beta family of growth factors signal from the cell surface through serine/threonine kinase receptors. Intracellular propagation of the signal occurs by phosphorylation of intracellular proteins of the Smad family. Smad7 belongs to the subclass of inhibitory Smads that function as antagonists of TGF-beta signaling. A yeast two-hybrid(More)
When exposed to sodium butyrate (NaBut), exponentially growing cells accumulate in G1 and G2 phases of the cell cycle. In the human breast cancer cell line MDA-MB-231, an arrest in G2 phase was observed when the cells were released from hydroxyurea block (G1/S interface) in the presence of NaBut. The inhibition of G2 progression was correlated with(More)
Aneuploidy and chromosomal instability (CIN) are common abnormalities in human cancer. Alterations of the mitotic spindle checkpoint are likely to contribute to these phenotypes, but little is known about somatic alterations of mitotic spindle checkpoint genes in breast cancer. To obtain further insight into the molecular mechanisms underlying aneuploidy in(More)
The human NOV secreted glycoprotein (NOVH) is abundant in the fetal and adult adrenal cortex. The amount of NOVH increases in benign adrenocortical tumors and decreases in malignant adrenocortical tumors, suggesting that NOVH plays a role in tumorigenesis in the adrenal cortex. Transforming growth factor beta1 (TGFbeta1), fibroblast growth factor 2 (FGF2),(More)
Overexpression of cyclin D1, a G1 cell cycle regulator, is often found in many different tumor types, such as breast carcinoma and squamous cell carcinoma of the head and neck. The overexpression of this protein is, in several cases, associated with a poor prognosis. In this study, the effect of cyclin D1 on radiosensitivity was investigated in a breast(More)