Learn More
The medial septum-diagonal band complex (MSDB) contains cholinergic and non-cholinergic neurons known to play key roles in learning and memory processing, and in the generation of hippocampal theta rhythm. Electrophysiologically, several classes of neurons have been described in the MSDB, but their chemical identity remains to be fully established. By(More)
The indusium griseum (IG) and anterior hippocampal continuation (AHC) are longitudinal and continuous structures that consist of two narrow strips of gray matter overlying the rostrocaudal length of the corpus callosum, extending rostrally to the genu of the corpus callosum and ventrally to the rostrum. The present study aimed to characterize the phenotype(More)
This paper introduces a method based on graph theory and operations research techniques to optimize learning path discovery. In this method, learning objects are considered as nodes and competencies as vertices of a learning graph. A first step consists in reducing the solution space by obtaining an induced subgraph H. In a second step, the search of an(More)
By its projections to the primary visual and the prefrontal cortices, the basal forebrain cholinergic system is involved in cognitive processing of sensory stimuli. It has been suggested that visual stimulus-induced cholinergic activation of the visual cortex may exert a permissive role on thalamocortical inputs. However, it is not known if visual(More)
Excitotoxic neonatal ventral hippocampus (NVH) lesions in rats result in characteristic post-pubertal hyper-responsiveness to stress and cognitive abnormalities analogous to those described in schizophrenia and suggestive of alterations in dopamine (DA) neurotransmission. Converging lines of evidence also point to dysfunctions in the cortical cholinergic(More)
Excitotoxic lesion of the ventral hippocampus in neonatal rats is a putative animal model of schizophrenia with characteristic developmental abnormalities in dopaminergic neurotransmission and prefrontal cortical functions. Converging evidence also points to the involvement of the central cholinergic system in neuropsychiatric disorders. These two(More)
In rats, selective depletion of the cholinergic interneurons in the ventral striatum (nucleus accumbens or N.Acc.) results in heightened behavioural sensitivity to amphetamine and impaired sensorimotor gating processes, suggesting a hyper-responsiveness to dopamine (DA) activity in the N.Acc. We hypothesized that local cholinergic depletion may also trigger(More)
A delicate balance between dopaminergic and cholinergic activity in the ventral striatum or nucleus accumbens (N.Acc) appears to be important for optimal performance of a wide range of behaviours. While functional interactions between these systems are complex, some data suggest that acetylcholine in the N.Acc. may dampen the effects of excessive dopamine(More)
A growing body of literature suggests that sex differences exist in both rodents and humans in terms of the central processing of stress and emotion, and an important factor in this regard may involve differential hemispheric specialization. The amygdala has been shown to be functionally asymmetrical in both rats and humans and its involvement in stress and(More)