Learn More
Interpretation of high-throughput biological data requires a knowledge of the design principles underlying the networks that sustain cellular functions. Of particular importance is the genetic network, a set of genes that interact through directed transcriptional regulation. Genes that exert a regulatory role encode dedicated transcription factors(More)
UNLABELLED We propose a simple algorithm to detect dominating synonymous codon usage bias in genomes. The algorithm is based on a precise mathematical formulation of the problem that lead us to use the Codon Adaptation Index (CAI) as a 'universal' measure of codon bias. This measure has been previously employed in the specific context of translational bias.(More)
New and simple numerical criteria based on a codon adaptation index are applied to the complete genomic sequences of 80 Eubacteria and 16 Archaea, to infer weak and strong genome tendencies toward content bias, translational bias, and strand bias. These criteria can be applied to all microbial genomes, even those for which little biological information is(More)
SOI3 was identified by a mutation, soi3-1, that suppressed a mutant trans-Golgi network (TGN) localization signal in the Kex2p cytosolic tail. SOI3, identical to RAV1, encodes a protein important for regulated assembly of vacuolar ATPase. Here, we show that Soi3/Rav1p is required for transport between the early endosome and the late endosome/prevacuolar(More)
The organization of transcription within the prokaryotic nucleoid may be expected to both depend on and determine the structure of the chromosome. Indeed, immunofluorescence localization of transcriptional regulators has revealed foci in actively transcribing Escherichia coli cells. Furthermore, structural and biochemical approaches suggest that there are(More)
A major challenge for bioinformatics and theoretical biology is to build and analyse a unified model of biological knowledge resulting from high-throughput experiment data. Former work analyzed heterogeneous data (protein-protein interactions, genetic regulation, metabolism, synexpression) by modelling them by graphs. These models are unable to represent(More)
Transcriptional activity has been shown to relate to the organization of chromosomes in the eukaryotic nucleus and in the bacterial nucleoid. In particular, highly transcribed genes, RNA polymerases and transcription factors gather into discrete spatial foci called transcription factories. However, the mechanisms underlying the formation of these foci and(More)
Eukaryotic cells respond to DNA damage by arresting the cell cycle and modulating gene expression to ensure efficient DNA repair. We used global transcriptome analysis to investigate the role of ploidy and mating-type in inducing the response to damage in various Saccharomyces cerevisiae strains. We observed a response to DNA damage specific to haploid(More)
Sequences of 66 genes encoding bacterial or yeast membrane proteins have been examined for the respective positioning of putative transmembrane domains and translational pauses. The latter were operationally defined as clusters of at least 17 non-preferred codons along the mRNA. The putative transmembrane domains were defined as stretches of at least 17(More)