Learn More
Estuarine waters are continuously loaded with chemicals which affect the physiology of aquatic organisms to various extents. They also have adverse effects on a wide range of behaviors. Nonylphenols and related compounds are biodegradation products of the nonionic surfactants nonylphenol polyethoxylates. They are commonly found in the aquatic environment.(More)
Hilbert-Huang transform is a method that has been introduced recently to decompose nonlinear, nonstationary time series into a sum of different modes, each one having a characteristic frequency. Here we show the first successful application of this approach to homogeneous turbulence time series. We associate each mode to dissipation, inertial range and(More)
Planktonic copepods are small crustaceans that have the ability to swim by quick powerful jumps. Such an aptness is used to escape from high shear regions, which may be caused either by flow perturbations, produced by a large predator (i.e., fish larvae), or by the inherent highly turbulent dynamics of the ocean. Through a combined experimental and(More)
9 In this paper we presented the analysis of two long time series of daily river flow data, 32 years recorded in the Seine river (France), and 25 years recorded in the Wimereux river (Wimereux, France). We applied a scale based decomposition method, namely Empirical Mode Decomposition (EMD), on these time series. The data were decomposed into several(More)
Determinism and randomness are two inherent aspects of all physical processes. Time series from chaotic systems share several features identical with those generated from stochastic processes, which makes them almost undistinguishable. In this paper, a new method based on Benford's law is designed in order to distinguish noise from chaos by only information(More)
In this paper we present an extended version of Hilbert-Huang transform, namely arbitrary-order Hilbert spectral analysis, to characterize the scale-invariant properties of a time series directly in an amplitude-frequency space. We first show numerically that due to a nonlinear distortion, traditional methods require high-order harmonic components to(More)
Studies on the behavior of copepods require both an appropriate experimental design and the means to perform objectively verifiable numerical analysis. Despite the growing number of publications on copepod behavior, it has been difficult to compare these studies. In this study, we studied two species of copepods, Eurytemora affinis and Pseudodiaptomus(More)
We consider here surf zone turbulence measurements, recorded in the Eastern En-glish Channel using a sonic anemometer. In order to characterize the intermittent properties of their fluctuations at many time scales, we analyze the experimental time series using the Empirical Mode Decomposition (EMD) method. The series is decomposed into a sum of modes, each(More)
The calanoid copepod Eurytemora affinis dominates the zooplankton communities in most northern hemisphere estuaries. A recurrent behavior noticed in several estuaries suggests that this species maintains its horizontal position through vertical migration. In order to investigate this behavioral strategy in detail, we sampled E. affinis nauplii, copepodids(More)
BACKGROUND The fetal heart rate (FHR) is commonly monitored during labor to detect early fetal acidosis. FHR variability is traditionally investigated using Fourier transform, often with adult predefined frequency band powers and the corresponding LF/HF ratio. However, fetal conditions differ from adults and modify spectrum repartition along frequencies. (More)