François G. Meyer

Learn More
Wavelets are ill-suited to represent oscillatory patterns: rapid variations of intensity can only be described by the small scale wavelet coefficients, which are often quantized to zero, even at high bit rates. Our goal is to provide a fast numerical implementation of the best wavelet packet algorithm in order to demonstrate that an advantage can be gained(More)
We construct a new adaptive basis of functions which is reasonably well localized with only one peak in frequency. We develop a compression algorithm that exploits this basis to obtain the most economical representation of the image in terms of textured patterns with different orientations, frequencies, sizes, and positions. The technique directly works in(More)
The purpose of the study was to quantify the strength of motor-unit coherence from the left and right first dorsal interosseous muscles in untrained, skill-trained (musicians), and strength-trained (weightlifters) individuals who had long-term specialized use of their hand muscles. The strength of motor-unit coherence was quantified from a total of 394(More)
Image coding methods based on adaptive wavelet transforms and those employing zerotree quantization have been shown to be successful. We present a general zerotree structure for an arbitrary wavelet packet geometry in an image coding framework. A fast basis selection algorithm is developed; it uses a Markov chain based cost estimate of encoding the image(More)
The original contributions of this paper are twofold: a new understanding of the influence of noise on the eigenvectors of the graph Laplacian of a set of image patches, and an algorithm to estimate a denoised set of patches from a noisy image. The algorithm relies on the following two observations: (1) the low-index eigenvectors of the diffusion, or graph(More)
This paper addresses the problem of detecting significant changes in fMRI time series that are correlated to a stimulus time course. This paper provides a new approach to estimate the parameters of a semiparametric generalized linear model of fMRI time series. The fMRI signal is described as the sum of two effects: a smooth trend and the response to the(More)
Because of the inherently low signal to noise ratio (SNR) of fMRI data, removal of low frequency signal intensity drift is an important preprocessing step, particularly in those brain regions that weakly activate. Two known sources of drift are noise from the MR scanner and aliasing of physiological pulsations. However, the amount and direction of drift is(More)
Terahertz imaging makes it possible to acquire images of objects concealed underneath clothing by measuring the radiometric temperatures of different objects on a human subject. The goal of this work is to automatically detect and segment concealed objects in broadband 0.1-1 THz images. Due to the inherent physical properties of passive terahertz imaging(More)
The rate of change in the fluctuations in motor output differs during the performance of fatiguing contractions that involve different types of loads. The purpose of this study was to examine the contribution of frequency modulation of motor unit discharge to the fluctuations in the motor output during sustained contractions with the force and position(More)
Compression is a relatively new introduced technique for seismic data operations. The main drive behind the use of data compression in seismic data is the very large size of seismic data acquired. Some of the most recent acquired marine seismic data sets exceed 10 Tbytes, and in fact there are currently seismic surveys planned with a volume of around 120(More)