François Forget

Learn More
Surface conditions on Mars are currently cold and dry, with water ice unstable on the surface except near the poles. However, geologically recent glacierlike landforms have been identified in the tropics and the midlatitudes of Mars. The ice has been proposed to originate from either a subsurface reservoir or the atmosphere. We present high-resolution(More)
The observation of small gullies associated with recent surface runoff on Mars has renewed the question of liquid water stability at the surface of Mars. The gullies could be formed by groundwater seepage from underground aquifers; however, observations of gullies originating from isolated peaks and dune crests question this scenario. We show that these(More)
Observations from the gamma-ray spectrometer instrument suite on the Mars Odyssey spacecraft have been interpreted as indicating the presence of vast reservoirs of near-surface ice in high latitudes of both martian hemispheres. Ice concentrations are estimated to range from 70 per cent at 60 degrees latitude to 100 per cent near the poles, possibly overlain(More)
Abstract. A database of statistics which describe the climate and surface environment of Mars has been constructed directly on the basis of output from multiannual integrations of two general circulation models developed jointly at Laboratoire de Météorologie Dynamique du Centre National de la Recherche Scientifique, France, and the University of Oxford,(More)
Geomorphic evidence that Mars was warm enough to support flowing water about 3.8 billion years ago presents a continuing enigma that cannot be explained by conventional greenhouse warming mechanisms. Model calculations show that the surface of early Mars could have been warmed through a scattering variant of the greenhouse effect, resulting from the ability(More)
Global mineralogical mapping of Mars by the Observatoire pour la Mineralogie, l'Eau, les Glaces et l'Activité (OMEGA) instrument on the European Space Agency's Mars Express spacecraft provides new information on Mars' geological and climatic history. Phyllosilicates formed by aqueous alteration very early in the planet's history (the "phyllocian" era) are(More)
[1] The East Candor Interior Layered Deposit (ILD) has signatures of monoand polyhydrated sulfate in alternating layers that give insight into the processes which formed these layered deposits and on the environmental conditions acting on them since then. We use orbital data to explore multiple hypotheses for how these deposits formed: (1) sulfate-bearing(More)
The recent identification of large deposits of sulphates by remote sensing and in situ observations has been considered evidence of the past presence of liquid water on Mars. Here we report the unambiguous detection of diverse phyllosilicates, a family of aqueous alteration products, on the basis of observations by the OMEGA imaging spectrometer on board(More)
On the basis of geological evidence, it is often stated that the early martian climate was warm enough for liquid water to flow on the surface thanks to the greenhouse effect of a thick atmosphere. We present 3D global climate simulations of the early martian climate performed assuming a faint young Sun and a CO2 atmosphere with surface pressure between 0.1(More)
A new wavelength-dependent model of the single-scattering properties of the Martian dust is presented. The model encompasses the solar wavelengths (0.3 to 4.3 micrometers at 0.02 micrometer resolution) and does not assume a particular mineralogical composition of the particles. We use the particle size distribution, shape, and single-scattering properties(More)