Learn More
Olfactory ensheathing cells show promise in preclinical animal models as a cell transplantation therapy for repair of the injured spinal cord. This is a report of a clinical trial of autologous transplantation of olfactory ensheathing cells into the spinal cord in six patients with complete, thoracic paraplegia. We previously reported on the methods of(More)
Recent reports have highlighted the potential therapeutic role of olfactory ensheathing cells for repair of spinal cord injuries. Previously ensheathing cells collected from the olfactory bulbs within the skull were used. In humans a source of these cells for autologous therapy lies in the nasal mucosa where they accompany the axons of the olfactory(More)
Bromocriptine or other dopamine agonists are usually effective for the treatment of prolactin-secreting adenomas. Five to 18% of prolactinomas, however, do not respond to such therapy. We have shown previously that such resistance to bromocriptine correlates with reduced binding to the D2 receptor subtype of dopamine, the major PRL inhibiting factor. In the(More)
Evidence for the presence of the vitamin D receptor in brain implies this vitamin may have some function in this organ. This study investigates whether vitamin D(3) acts during brain development. We demonstrate that rats born to vitamin D(3)-deficient mothers had profound alterations in the brain at birth. The cortex was longer but not wider, the lateral(More)
Olfactory ensheathing cells transplanted into the injured spinal cord in animals promote regeneration and remyelination of descending motor pathways through the site of injury and the return of motor functions. In a single-blind, Phase I clinical trial, we aimed to test the feasibility and safety of transplantation of autologous olfactory ensheathing cells(More)
We demonstrated recently that transplantation of olfactory ensheathing cells from the nasal olfactory mucosa can promote axonal regeneration after complete transection of the spinal cord in adult rat. Ten weeks after transection and transplantation there was significant recovery of locomotor behaviour and restoration of descending inhibition of spinal cord(More)
It has been known for more than 20 years that vitamin D exerts marked effects on immune and neural cells. These non-classical actions of vitamin D have recently gained a renewed attention since it has been shown that diminished levels of vitamin D induce immune-mediated symptoms in animal models of autoimmune diseases and is a risk factor for various brain(More)
Several studies have demonstrated the potential of olfactory ensheathing cells for the repair of central and peripheral nerve injury. However, the majority of these studies have been performed with olfactory ensheathing cells derived from the olfactory bulbs, situated inside the skull. A more clinically relevant source of olfactory ensheathing cells is the(More)
Neurogenesis continues throughout adult life in the mammalian olfactory epithelium. This process is a dynamic state of proliferation, differentiation and cell death, probably regulated by autocrine and paracrine signals such as peptide growth factors. Previous investigations have demonstrated roles for some growth factors in olfactory neurogenesis in vitro,(More)
A new neuronal cell line was generated by transfection of rat olfactory epithelium with immortalizing recombinant oncogene E1A of adenovirus-2. The resulting 13.S.1.24 line of transformed cells expressed an antigenic phenotype of olfactory neuronal progenitors. Addition of dopamine to 13.S.1.24 cultures induced reduction of cell number within 2 days. Two(More)