Learn More
A survey of six bee viruses on a large geographic scale was undertaken by using seemingly healthy bee colonies and the PCR technique. Samples of adult bees and pupae were collected from 36 apiaries in the spring, summer, and autumn during 2002. Varroa destructor samples were collected at the end of summer following acaricide treatment. In adult bees, during(More)
The distribution of deformed wing virus infection within the honey bee reproductive castes (queens, drones) was investigated by in situ hybridization and immunohistology from paraffin embedded sections. Digoxygenin or CY5.5 fluorochrome end-labelled nucleotide probes hybridizing to the 3' portion of the DWV genome were used to identify DWV RNA, while a(More)
Nocturnal insects such as moths are ideal models to study the molecular bases of olfaction that they use, among examples, for the detection of mating partners and host plants. Knowing how an odour generates a neuronal signal in insect antennae is crucial for understanding the physiological bases of olfaction, and also could lead to the identification of(More)
A PCR based diagnostic method to detect salivary gland hypertrophy virus (SGHV) in tsetse flies is described. Two sets of primers GpSGHV1F/GpSGHV1R and GpSGHV2F/GpSGHV2R were selected from a virus-specific sequence. Both primer sets can detect specifically the virus in individual tsetse flies by generating an amplicon of 401 bp. Attempts were made to(More)
Glossina pallidipes and Musca domestica salivary gland hypertrophy viruses (GpSGHV and MdSGHV) replicate in the nucleus of salivary gland cells causing distinct tissue hypertrophy and reduction of host fertility. They share general characteristics with the non-occluded insect nudiviruses, such as being insect-pathogenic, having enveloped, rod-shaped(More)
Honey bee (Apis mellifera L.) colonies are subjected to many persistent viral infections that do not exhibit clinical signs. The identification of criteria that could identify persistent or latent infections in bee colonies is a challenging task for field investigators and beekeepers. With this aim in view, we developed a molecular method to estimate the(More)
Several species of tsetse flies can be infected by the Glossina pallidipes salivary gland hypertrophy virus (GpSGHV). Infection causes salivary gland hypertrophy and also significantly reduces the fecundity of the infected flies. To better understand the molecular basis underlying the pathogenesis of this unusual virus, we sequenced and analyzed its genome.(More)
Many thousands of endoparasitic wasp species are known to inject polydnavirus (PDV) particles into their caterpillar host during oviposition, causing immune and developmental dysfunctions that benefit the wasp larva. PDVs associated with braconid and ichneumonid wasps, bracoviruses and ichnoviruses respectively, both deliver multiple circular dsDNA(More)
Queen fecundity is a critical issue for the health of honeybee (Apis mellifera L.) colonies, as she is the only reproductive female in the colony and responsible for the constant renewal of the worker bee population. Any factor affecting the queen's fecundity will stagnate colony development, increasing its susceptibility to opportunistic pathogens. We(More)
Many species of tsetse flies can be infected by a virus that causes salivary gland hypertrophy (SGH) and virus isolated from Glossina pallidipes (GpSGHV) has recently been sequenced. Flies having SGH have a reduced fecundity and fertility. To better understand the impact of this virus in a laboratory colony of G. pallidipes, where the majority of flies are(More)