Learn More
For many applications in graphics, design, and human computer interaction, it is essential to understand where humans look in a scene. Where eye tracking devices are not a viable option, models of saliency can be used to predict fixation locations. Most saliency approaches are based on bottom-up computation that does not consider top-down image semantics(More)
A conventional camera captures blurred versions of scene information away from the plane of focus. Camera systems have been proposed that allow for recording all-focus images, or for extracting depth, but to record both simultaneously has required more extensive hardware and reduced spatial resolution. We propose a simple modification to a conventional(More)
In blind deconvolution one aims to estimate from an input blurred image y a sharp image x and an unknown blur kernel k. Recent research shows that a key to success is to consider the overall shape of the posterior distribution p(x, k|y) and not only its mode. This leads to a distinction between MAP x,k strategies which estimate the mode pair x, k and often(More)
Blind deconvolution is the recovery of a sharp version of a blurred image when the blur kernel is unknown. Recent algorithms have afforded dramatic progress, yet many aspects of the problem remain challenging and hard to understand. The goal of this paper is to analyze and evaluate recent blind deconvolution algorithms both theoretically and experimentally.(More)
We present a new technique for the display of high-dynamic-range images, which reduces the contrast while preserving detail. It is based on a two-scale decomposition of the image into a base layer, encoding large-scale variations, and a detail layer. Only the base layer has its contrast reduced, thereby preserving detail. The base layer is obtained using an(More)
The bilateral filter is a nonlinear filter that smoothes a signal while preserving strong edges. It has demonstrated great effectiveness for a variety of problems in computer vision and computer graphics, and fast versions have been proposed. Unfortunately, little is known about the accuracy of such accelerations. In this paper, we propose a new(More)
Blind deconvolution is the recovery of a sharp version of a blurred image when the blur kernel is unknown. Recent algorithms have afforded dramatic progress, yet many aspects of the problem remain challenging and hard to understand. The goal of this paper is to analyze and evaluate recent blind deconvolution algorithms both theoretically and experimentally.(More)
Object motion during camera exposure often leads to noticeable blurring artifacts. Proper elimination of this blur is challenging because the blur kernel is unknown, varies over the image as a function of object velocity, and destroys high frequencies. In the case of motions along a 1D direction (e.g. horizontal) we show that these challenges can be(More)
We extract heart rate and beat lengths from videos by measuring subtle head motion caused by the Newtonian reaction to the influx of blood at each beat. Our method tracks features on the head and performs principal component analysis (PCA) to decompose their trajectories into a set of component motions. It then chooses the component that best corresponds to(More)