Learn More
Phosphoinositide 3-kinases (PI3Ks) are important signaling enzymes involved in the regulation of a number of critical cell functions. Significant progress has been made during the last few years in defining the implication of individual PI3K isoforms. The role of the class IA PI3Kβ in different cell types has only been recently uncovered by the use of(More)
The virulence factor IpgD, delivered into nonphagocytic cells by the type III secretion system of the pathogen Shigella flexneri, is a phosphoinositide 4-phosphatase generating phosphatidylinositol 5 monophosphate (PtdIns5P). We show that PtdIns5P is rapidly produced and concentrated at the entry foci of the bacteria, where it colocalises with(More)
The phosphoinositide metabolic pathway, which regulates cellular processes implicated in survival, motility, and trafficking, is often subverted by bacterial pathogens. Shigella flexneri, a bacterium that causes dysentery, injects IpgD, a phosphoinositide phosphatase that generates the lipid phosphatidylinositol 5-phosphate (PI5P), into host cells, thereby(More)
Anaplastic large-cell lymphomas (ALCLs) bearing the t(2;5) translocation (ALK(+)ALCLs) are frequently characterized by skin colonization and associated with a poor prognosis. Using conditional transgenic models of anaplastic lymphoma kinase-positive (ALK(+)) lymphomas and human ALK(+)ALCL cell lines, in the present study, we show that high-mobility-group(More)
PtdIns3P is recognized as an important player in the control of the endocytotic pathway and in autophagy. Recent data also suggest that PtdIns3P contributes to molecular mechanisms taking place at the plasma membrane and at the midbody during cytokinesis. This lipid is present in low amounts in mammalian cells and remains difficult to quantify either by(More)
The phosphoinositide metabolism that is highly controlled by a set of kinases, phosphatases and phospholipases leads to the production of several second messengers playing critical roles in intracellular signal transduction mechanisms. Recent discoveries have unraveled unexpected roles for the three phosphatidylinositol monophosphates, PtdIns(3)P,(More)
The chimera nucleophosmin-anaplastic lymphoma kinase (NPM-ALK), the tyrosine kinase activity of which is constitutively upregulated, is the causative agent of 75% of the anaplastic large-cell lymphomas (ALCLs). We have demonstrated that NPM-ALK induces the production of reactive oxygen species (ROS) by a pathway involving the arachidonic acid-metabolizing(More)
Phosphoinositides play a central role in many physiological processes by assisting the recruitment of proteins to membranes through specific phosphoinositide-binding motifs. How this recruitment is coordinated in space and time is not well understood. Here we show that BIN1/M-Amphiphysin2, a protein involved in T-tubule biogenesis in muscle cells and(More)
Rho GTPases act as molecular switches central in cellular processes such as cytoskeleton dynamics, migration, cell proliferation, growth or survival. Their activation is tightly regulated downstream of cell surface receptors by Guanine nucleotide Exchange Factors (GEFs), that are responsible for the specificity, the accuracy, and the spatial restriction of(More)
Phosphoinositides are minor constituents of cell membranes playing a critical role in the regulation of many cellular functions. Recent discoveries indicate that mutations in several phosphoinositide kinases and phosphatases generate imbalances in the levels of phosphoinositides, thereby leading to the development of human diseases. Although the roles of(More)