Frédéric Picou

Learn More
Thyroid hormone (T(3)) can trigger a massive differentiation of cultured oligodendrocytes precursor cells (OPC) by binding the nuclear T(3) receptor α1 (TRα1). Whether this reflects a physiological function of TRα1 remains uncertain. Using a recently generated mouse model, in which CRE/loxP recombination is used to block its function, we show that TRα1 acts(More)
Thyroid hormones (TH, including the prohormone thyroxine (T4) and its active deiodinated derivative 3,3',5-triiodo-L-thyronine (T3)) are important regulators of vertebrates neurodevelopment. Specific transporters and deiodinases are required to ensure T3 access to the developing brain. T3 activates a number of differentiation processes in neuronal and glial(More)
Thyroid hormone is necessary for normal development of the central nervous system, as shown by the severe mental retardation syndrome affecting hypothyroid patients with low levels of active thyroid hormone. The postnatal defects observed in hypothyroid mouse cerebellum are recapitulated in mice heterozygous for a dominant-negative mutation of Thra, the(More)
Thyroid hormone (T3) has a major influence on cerebellum post-natal development. The major phenotypic landmark of exposure to low levels of T3 during development (hypothyroidism) in the cerebellum is the retarded inward migration of the most numerous cell type, granular neurons. In order to identify the direct genetic regulation exerted by T3 on cerebellar(More)
Thyroid hormone (T₃) exerts an important influence on neurodevelopment, which can be analysed by using the postnatal development of rodent cerebellum as a model. T₃ acts on all types of neuronal and glial cells, which express at least the TRα1 nuclear receptor, and, for some of them, the TRβ1 isoform. However, as T₃ also activates the secretion of(More)
  • 1