Frédéric Meunier

Learn More
This extended abstract describes and analyses a near-optimal probabilistic algorithm, HYPERLOGLOG, dedicated to estimating the number of distinct elements (the cardinality) of very large data ensembles. Using an auxiliary memory of m units (typically, “short bytes”), HYPERLOGLOG performs a single pass over the data and produces an estimate of the(More)
This paper is motivated by operating self service transport systems that flourish nowadays. In cities where such systems have been set up with bikes, trucks travel to maintain a suitable number of bikes per station. It is natural to study a version of the C-delivery TSP defined by Chalasani and Motwani in which, unlike their definition, C is part of the(More)
This paper deals with a new problem that is a generalization of the many to many pickup and delivery problem and which is motivated by operating self-service bike sharing systems. There is only one commodity, initially distributed among the vertices of a graph, and a capacitated single vehicle aims to redistribute the commodity in order to reach a target(More)
The relationship between gender and word ending in French is a quasiregular one (e.g., most words ending in -ette are feminine, but not all). As such, the gender of low-frequency irregular forms (e.g., squelette, which is masculine) should take longer to classify than low-frequency regular forms according to neural network models. A regularity effect was(More)
Given d +1 sets, or colours, S1,S2, . . . ,Sd+1 of points in Rd , a colourful set is a set S ⊂⋃i Si such that |S ∩Si | ≤ 1 for i = 1, . . . ,d +1. The convex hull of a colourful set S is called a colourful simplex. Bárány’s colourful Carathéodory theorem asserts that if the origin 0 is contained in the convex hull of Si for i = 1, . . . ,d + 1, then there(More)
Let V (n, k, s) be the set of k-subsets S of [n] such that for all i, j ∈ S, we have |i−j| ≥ s We define almost s-stable Kneser hypergraph KG ( [n] k )∼ s-stab to be the r-uniform hypergraph whose vertex set is V (n, k, s) and whose edges are the r-uples of disjoint elements of V (n, k, s). With the help of a Zp-Tucker lemma, we prove that, for p prime and(More)