Frédéric Lebrun-Julien

Learn More
Neurotrophin binding to the p75 neurotrophin receptor (p75(NTR)) activates neuronal apoptosis following adult central nervous system injury, but the underlying cellular mechanisms remain poorly defined. In this study, we show that the proform of nerve growth factor (proNGF) induces death of retinal ganglion cells in adult rodents via a p75(NTR)-dependent(More)
Little is known about the molecular mechanisms that limit the ability of retinal neurons to respond to neurotrophic factor stimulation following axonal injury. In the adult retina, nerve growth factor (NGF) binds to TrkA (expressed by neurons) and p75(NTR) (expressed by Müller glia), but fails to promote the survival of axotomized retinal ganglion cells(More)
Glial cells and neurons are engaged in a continuous and highly regulated bidirectional dialog. A remarkable example is the control of myelination. Oligodendrocytes in the central nervous system (CNS) and Schwann cells (SCs) in the peripheral nervous system (PNS) wrap their plasma membranes around axons to organize myelinated nerve fibers that allow rapid(More)
The central hypothesis of excitotoxicity is that excessive stimulation of neuronal NMDA-sensitive glutamate receptors is harmful to neurons and contributes to a variety of neurological disorders. Glial cells have been proposed to participate in excitotoxic neuronal loss, but their precise role is defined poorly. In this in vivo study, we show that NMDA(More)
The mammalian target of rapamycin (mTOR) pathway integrates multiple signals and regulates crucial cell functions via the molecular complexes mTORC1 and mTORC2. These complexes are functionally dependent on their raptor (mTORC1) or rictor (mTORC2) subunits. mTOR has been associated with oligodendrocyte differentiation and myelination downstream of the(More)
Myelinated axons are a beautiful example of symbiotic interactions between two cell types: Myelinating glial cells organize axonal membranes and build their myelin sheaths to allow fast action potential conduction, while axons regulate myelination and enhance the survival of myelinating cells. Axonal demyelination, occurring in neurodegenerative diseases or(More)
The ganglioside-induced differentiation-associated protein 1 (GDAP1) is a mitochondrial fission factor and mutations in GDAP1 cause Charcot-Marie-Tooth disease. We found that Gdap1 knockout mice (Gdap1(-/-)), mimicking genetic alterations of patients suffering from severe forms of Charcot-Marie-Tooth disease, develop an age-related, hypomyelinating(More)
Histones deacetylases (HDACs), besides their function as epigenetic regulators, deacetylate and critically regulate the activity of nonhistone targets. In particular, HDACs control partially the proapoptotic activity of p53 by balancing its acetylation state. HDAC inhibitors have revealed neuroprotective properties in different models, but the exact(More)
Glaucoma is defined as a chronic and progressive optic nerve neuropathy, characterized by apoptosis of retinal ganglion cells (RGC) that leads to irreversible blindness. Ocular hypertension is a major risk factor, but in glaucoma RGC death can persist after ocular hypertension is normalized. To understand the mechanism underlying chronic RGC death we(More)
Myelin formation during peripheral nervous system (PNS) development, and reformation after injury and in disease, requires multiple intrinsic and extrinsic signals. Akt/mTOR signaling has emerged as a major player involved, but the molecular mechanisms and downstream effectors are virtually unknown. Here, we have used Schwann-cell-specific conditional gene(More)