Learn More
Brain development is characterized by maturational processes that span the period from childhood through adolescence to adulthood, but little is known whether and how developmental processes differ during these phases. We analyzed the development of functional networks by measuring neural synchrony in EEG recordings during a Gestalt perception task in 68(More)
Recent data indicate that the synchronisation of oscillatory activity is relevant for the development of cortical circuits as demonstrated by the involvement of neural synchrony in synaptic plasticity and changes in the frequency and synchronisation of neural oscillations during development. Analyses of resting-state and task-related neural synchrony(More)
Neural oscillations at different frequencies have recently been related to a wide range of basic and higher cognitive processes. One possible role of oscillatory activity is to assure the maintenance of information in working memory (WM). Here we review the possibility that rhythmic activity at theta, alpha, and gamma frequencies serve distinct functional(More)
Recent findings have implicated thalamic alpha oscillations in the phasic modulation of cortical activity. However, the precise relationship between thalamic alpha oscillations and neocortical activity remains unclear. Here we show in a large sample of healthy human participants (n = 45) using spatial filtering techniques and measures of phase amplitude(More)
Evidence from anatomical and functional imaging studies have highlighted major modifications of cortical circuits during adolescence. These include reductions of gray matter (GM), increases in the myelination of cortico-cortical connections and changes in the architecture of large-scale cortical networks. It is currently unclear, however, how the ongoing(More)
Previous studies in electrophysiology have provided consistent evidence for a relationship between neural oscillations in different frequency bands and the maintenance of information in working memory (WM). While the amplitude and cross-frequency coupling of neural oscillations have been shown to be modulated by the number of items retained during WM,(More)
We construct different types of quasiperiodically forced circle homeomorphisms with transitive but non-minimal dynamics. Concerning the recent Poincaré-like classification for this class of maps of [1], we demonstrate that transitive but non-minimal behaviour can occur in each of the different cases. This closes one of the last gaps in the topological(More)
The thalamus has recently received renewed interest in systems-neuroscience and schizophrenia (ScZ) research because of emerging evidence highlighting its important role in coordinating functional interactions in cortical-subcortical circuits. Moreover, higher cognitive functions, such as working memory and attention, have been related to thalamo-cortical(More)
The analysis of speech onset times has a longstanding tradition in experimental psychology as a measure of how a stimulus influences a spoken response. Yet the lack of accurate automatic methods to measure such effects forces researchers to rely on time-intensive manual or semiautomatic techniques. Here we present Chronset, a fully automated tool that(More)