Learn More
Functional and phylogenetic diversity are increasingly quantified in various fields of ecology and conservation biology. The need to maintain diversity turnover among sites, so-called beta-diversity, has also been raised in theoretical and applied ecology. In this study, we propose the first comprehensive framework for the large-scale mapping of taxonomic,(More)
Range shifts of many species are now documented as a response to global warming. But whether these observed changes are occurring fast enough remains uncertain and hardly quantifiable. Here, we developed a simple framework to measure change in community composition in response to climate warming. This framework is based on a community temperature index(More)
Rapid climatic change poses a threat to global biodiversity. There is extensive evidence that recent climatic change has affected animal and plant populations, but no indicators exist that summarise impacts over many species and large areas. We use data on long-term population trends of European birds to develop such an indicator. We find a significant(More)
Measuring biodiversity is a challenging task for research in taxonomy, ecology and conservation. Biodiversity is commonly measured using metrics related to species richness, phylogenetic-, or functional-trait diversity of species assemblages. Because these metrics are not always correlated with each other, they have to be considered separately. A descriptor(More)
Predicting species' responses to the combined effects of habitat and climate changes has become a major challenge in ecology and conservation biology. However, the effects of climatic and habitat gradients on species distributions have generally been considered separately. Here, we explore the relationships between the habitat and thermal dimensions of the(More)
Four theoretical models have been proposed to account for the origin and maintenance of leks: hotspot, female preference, hotshot, and black hole models. Each has been validated in particular cases, and most are not mutually exclusive; therefore, it has been difficult to contrast and separate them, empirically and experimentally. By using decoys to mimic(More)
The increase in species richness from the poles to the tropics, referred to as the latitudinal diversity gradient, is one of the most ubiquitous biodiversity patterns in the natural world. Although understanding how rates of speciation and extinction vary with latitude is central to explaining this pattern, such analyses have been impeded by the difficulty(More)
Beyond the effects of temperature increase on local population trends and on species distribution shifts, how populations of a given species are affected by climate change along a species range is still unclear. We tested whether and how species responses to climate change are related to the populations locations within the species thermal range. We(More)
Biotic homogenization (BH) is a process whereby some species (losers) are systematically replaced by others (winners). While this process has been related to the effects of anthropogenic activities, whether and how BH is occurring across regions and the role of native species as a driver of BH has hardly been investigated. Here, we examine the trend in the(More)
Predicting how and when adaptive evolution might rescue species from global change, and integrating this process into tools of biodiversity forecasting, has now become an urgent task. Here, we explored whether recent population trends of species can be explained by their past rate of niche evolution, which can be inferred from increasingly available(More)