Frédéric Jaouen

Learn More
Iron-based catalysts for the oxygen-reduction reaction in polymer electrolyte membrane fuel cells have been poorly competitive with platinum catalysts, in part because they have a comparatively low number of active sites per unit volume. We produced microporous carbon-supported iron-based catalysts with active sites believed to contain iron cations(More)
H(2)-air polymer-electrolyte-membrane fuel cells are electrochemical power generators with potential vehicle propulsion applications. To help reduce their cost and encourage widespread use, research has focused on replacing the expensive Pt-based electrocatalysts in polymer-electrolyte-membrane fuel cells with a lower-cost alternative. Fe-based cathode(More)
Replacement of noble metals in catalysts for cathodic oxygen reduction reaction with transition metals mostly create active sites based on a composite of nitrogen-coordinated transition metal in close concert with non-nitrogen-coordinated carbon-embedded metal atom clusters. Here we report a non-platinum group metal electrocatalyst with an active site(More)
Nine non-noble-metal catalysts (NNMCs) from five different laboratories were investigated for the catalysis of O(2) electroreduction in an acidic medium. The catalyst precursors were synthesized by wet impregnation, planetary ball milling, a foaming-agent technique, or a templating method. All catalyst precursors were subjected to one or more heat(More)
Fe-based catalytic sites for the reduction of oxygen in acidic medium have been identified by (57)Fe Mössbauer spectroscopy of Fe/N/C catalysts containing 0.03 to 1.55 wt% Fe, which were prepared by impregnation of iron acetate on carbon black followed by heat-treatment in NH(3) at 950 °C. Four different Fe-species were detected at all iron concentrations:(More)
Reduced size and direct electrochemical H2 compression are two distinct advantages of electrolyzers based on the acid-polymer electrolyte membrane technology over those relying on alkaline electrolytes. However, recourse to catalysts based on the scarce platinum-group-metals has hitherto been the price to pay. While the transition metal sulfides and(More)
While platinum has hitherto been the element of choice for catalysing oxygen electroreduction in acidic polymer fuel cells, tremendous progress has been reported for pyrolysed Fe-N-C materials. However, the structure of their active sites has remained elusive, delaying further advance. Here, we synthesized Fe-N-C materials quasi-free of crystallographic(More)
Limited availability of platinum is a potential threat to fuel cell commercialization. Since the 1970s, alternative catalysts to the electrochemical reduction of oxygen have been obtained from heat treatment at T > 600 degrees C of carbon with a non-noble metal and a source of nitrogen atoms. However, the process by which the heat treatment activates these(More)
Chemical & Biological Engineering Department, Center for Micro-Engineered Materials, University of New Mexico, Albuquerque, NM 87131, United States Zero Emission Research, Fuel cell and Battery Laboratory, Nissan Technical Center North America, Farmington Hills, MI 48331, United States Institut Charles Gerhardt de Montpellier, UMR 5253 CNRS Université de(More)