Frédéric J. Hoerndli

Learn More
Human memory is a polygenic trait. We performed a genome-wide screen to identify memory-related gene variants. A genomic locus encoding the brain protein KIBRA was significantly associated with memory performance in three independent, cognitively normal cohorts from Switzerland and the United States. Gene expression studies showed that KIBRA was expressed(More)
The adult nervous system is plastic, allowing us to learn, remember, and forget. Experience-dependent plasticity occurs at synapses--the specialized points of contact between neurons where signaling occurs. However, the mechanisms that regulate the strength of synaptic signaling are not well understood. Here, we define a Wnt-signaling pathway that modifies(More)
Paired helical filaments (PHF) are the principal pathologic components of neurofibrillary tangles in Alzheimer's disease (AD). To reproduce the formation of PHF in tissue culture, we stably expressed human tau with and without pathogenic mutations in human SH-SY5Y cells and exposed them for 5 days to aggregated synthetic beta-amyloid peptide (A beta 42).(More)
The neurotransmitter glutamate mediates excitatory synaptic transmission by gating ionotropic glutamate receptors (iGluRs). AMPA receptors (AMPARs), a subtype of iGluR, are strongly implicated in synaptic plasticity, learning, and memory. We previously discovered two classes of AMPAR auxiliary proteins in C. elegans that modify receptor kinetics and thus(More)
The strength of synaptic communication at central synapses depends on the number of ionotropic glutamate receptors, particularly the class gated by the agonist AMPA (AMPARs). Cornichon proteins, evolutionarily conserved endoplasmic reticulum cargo adaptors, modify the properties of vertebrate AMPARs when coexpressed in heterologous cells. However, the(More)
P301L mutant tau transgenic mice develop neurofibrillary tangles, a histopathologic hallmark of Alzheimer's disease and frontotemporal dementia (FTDP-17). To identify differentially expressed genes and to gain insight into pathogenic mechanisms, we performed a stringent analysis of the microarray dataset obtained with RNA from whole brains of P301L mutant(More)
BACKGROUND Identifying the molecular mechanisms and neural circuits that control learning and memory are major challenges in neuroscience. Mammalian MAGI/S-SCAM is a multi-PDZ domain synaptic scaffolding protein that interacts with a number of postsynaptic signaling proteins and is thereby thought to regulate synaptic plasticity [1], [2], [3]. PRINCIPAL(More)
BACKGROUND Whole-genome association studies in humans have enabled the unbiased discovery of new genes associated with human memory performance. However, such studies do not allow for a functional or causal testing of newly identified candidate genes. Since polymorphisms in Calsyntenin 2 (CLSTN2) showed a significant association with episodic memory(More)
A primary determinant of the strength of neurotransmission is the number of AMPA-type glutamate receptors (AMPARs) at synapses. However, we still lack a mechanistic understanding of how the number of synaptic AMPARs is regulated. Here, we show that UNC-116, the C. elegans homolog of vertebrate kinesin-1 heavy chain (KIF5), modifies synaptic strength by(More)
The transcriptomic and proteomic techniques presented in part I (Functional Genomics meets neurodegenerative disorders. Part I: transcriptomic and proteomic technology) of this back-to-back review have been applied to a range of neurodegenerative disorders, including Huntington's disease (HD), Prion diseases (PrD), Creutzfeldt-Jakob disease, amyotrophic(More)