Frédéric H.-T. Allain

Learn More
Sequence-dependent recognition of dsDNA-binding proteins is well understood, yet sequence-specific recognition of dsRNA by proteins remains largely unknown, despite their importance in RNA maturation pathways. Adenosine deaminases that act on RNA (ADARs) recode genomic information by the site-selective deamination of adenosine. Here, we report the solution(More)
A code predicting the RNA sequence that will be bound by a certain protein based on its amino acid sequence or its structure would provide a useful tool for the design of RNA binders with desired sequence-specificity. Such de novo designed RNA binders could be of extraordinary use in both medical and basic research applications. Furthermore, a code could(More)
Many proteins involved in pre-mRNA processing contain one or more copies of a 70-90-amino-acid alphabeta module called the ribonucleoprotein domain. RNA maturation depends on the specific recognition by ribonucleoproteins of RNA elements within pre-mRNAs and small nuclear RNAs. The human U1A protein binds an RNA hairpin during splicing, and regulates its(More)
Discrimination between self and non-self is a prerequisite for any defence mechanism; in innate defence, this discrimination is often mediated by lectins recognizing non-self carbohydrate structures and so relies on an arsenal of host lectins with different specificities towards target organism carbohydrate structures. Recently, cytoplasmic lectins isolated(More)
The upstream cleavage site of group I self-splicing introns is identified by an absolutely conserved U.G base-pair within a double helix. Mutant introns with a wobble C.A substitute are catalytically active, but all other combinations of nucleotides at these positions abolish splicing, suggesting that an unusual RNA structure generated by the wobble pair is(More)
The polypyrimidine tract binding protein (PTB) is a 58-kDa RNA binding protein involved in multiple aspects of mRNA metabolism including splicing regulation, polyadenylation, 3′end formation, internal ribosomal entry site-mediated translation, RNA localization and stability. PTB contains four RNA recognition motifs (RRMs) separated by three linkers. In this(More)
The three-dimensional structure determination of RNAs by NMR spectroscopy relies on chemical shift assignment, which still constitutes a bottleneck. In order to develop more efficient assignment strategies, we analysed relationships between sequence and (1)H and (13)C chemical shifts. Statistics of resonances from regularly Watson-Crick base-paired RNA(More)
Regulation of SMN2 exon 7 splicing is crucial for the production of active SMN protein and the survival of Spinal Muscular Atrophy (SMA) patients. One of the most efficient activators of exon 7 inclusion is hnRNP G, which is recruited to the exon by Tra2-β1. We report that in addition to the C-terminal region of hnRNP G, the RNA Recognition Motif (RRM) and(More)
The heterogeneous nuclear ribonucleoprotein (hnRNP) F belongs to the hnRNP H family involved in the regulation of alternative splicing and polyadenylation and specifically recognizes poly(G) sequences (G-tracts). In particular, hnRNP F binds a G-tract of the Bcl-x RNA and regulates its alternative splicing, leading to two isoforms, Bcl-x(S) and Bcl-x(L),(More)
The RNA binding protein heterogeneous nuclear ribonucleoprotein (hnRNP) F is involved in telomeres maintenance and pre-mRNA processing, such as alternative splicing and polyadenylation. It specifically recognizes RNA containing three consecutive guanines (G-tracts) that have the potential to assemble into G-quadruplexes. We have proposed recently that hnRNP(More)