Learn More
Interacting fermions are ubiquitous in nature, and understanding their thermodynamics is an important problem. We measured the equation of state of a two-component ultracold Fermi gas for a wide range of interaction strengths at low temperature. A detailed comparison with theories including Monte-Carlo calculations and the Lee-Huang-Yang corrections for(More)
Using a focused laser beam we stir a 87Rb Bose-Einstein condensate confined in a magnetic trap. We observe that the steady states of the condensate correspond to an elliptic cloud, stationary in the rotating frame. These steady states depend nonlinearly on the stirring parameters (amplitude and frequency), and various solutions can be reached experimentally(More)
One of the greatest challenges in modern physics is to understand the behaviour of an ensemble of strongly interacting particles. A class of quantum many-body systems (such as neutron star matter and cold Fermi gases) share the same universal thermodynamic properties when interactions reach the maximum effective value allowed by quantum mechanics, the(More)
We investigate the low-lying compression modes of a unitary Fermi gas with imbalanced spin populations. For low polarization, the strong coupling between the two spin components leads to a hydrodynamic behavior of the cloud. For large population imbalance we observe a decoupling of the oscillations of the two spin components, giving access to the effective(More)
OBJECTIVE Although most studies have focused on the cholesterol-lowering activity of stigmasterol, other bioactivities have been ascribed to this plant sterol compound, one of which is a potential anti-inflammatory effect. To investigate the effects of stigmasterol, a plant sterol, on the inflammatory mediators and metalloproteinases produced by(More)
Superconductivity and superfluidity of fermionic and bosonic systems are remarkable many-body quantum phenomena. In liquid helium and dilute gases, Bose and Fermi superfluidity has been observed separately, but producing a mixture in which both the fermionic and the bosonic components are superfluid is challenging. Here we report on the observation of such(More)
Low cholesterol and high 7-dehydrocholesterol (7DHC) levels are associated with a blockade of Delta7-reductase in the Smith-Lemli-Opitz syndrome (SLOS) and in the animals treated with the inhibitor AY9944. The impact of the cholesterol deficit and of the accumulation of 7DHC on the embryo were investigated in AY9944-treated pregnant rats receiving an(More)
We showed previously that 3 distal inhibitors of cholesterol synthesis are highly teratogenic in rats. AY 9944 and BM 15766 inhibit 7-dehydrocholesterol reductase, which catalyzes the last step of cholesterol synthesis, and triparanol inhibits Delta(24)-dehydrocholesterol reductase, which catalyzes the last step in another pathway. These molecules cause(More)
The impaired conversion of 7-dehydrocholesterol to cholesterol, as a result of a permanent inhibition of the activity of 7-dehydrocholesterol-delta 7-reductase, has been reported in the Smith-Lemli-Opitz (SLO) syndrome (1, 2). For the purpose of experimental teratology, an animal disease model consisting of the offspring of pregnant rats treated with AY(More)
7-Dehydrocholesterol accumulates in fetuses affected by the Smith-Lemli-Opitz syndrome as a result of a deficit in the ultimate step of cholesterol synthesis catalyzed by Delta7 reductase. Rat embryos explanted at gestation day 10 and cultured for 48 h in the presence of the Delta7 reductase inhibitor AY 9944 were used as a model to discriminate between the(More)