Learn More
We have identified mutant alleles of two sporophytically acting genes, HAIKU2 (IKU2) and MINISEED3 (MINI3). Homozygotes of these alleles produce a small seed phenotype associated with reduced growth and early cellularization of the endosperm. This phenotype is similar to that described for another seed size gene, IKU1. MINI3 encodes WRKY10, a WRKY class(More)
Formins are actin-organizing proteins that are involved in cytokinesis and cell polarity. In the plant Arabidopsis thaliana, there are more than 20 formin homologues, all of which have unknown roles. In this study, we characterize specific cellular and molecular functions of the Arabidopsis formin AtFH5. Despite the low identity of AtFH5 to yeast and(More)
Imprinted genes are expressed predominantly from either their paternal or their maternal allele. To date, all imprinted genes identified in plants are expressed in the endosperm. In Arabidopsis thaliana, maternal imprinting has been clearly demonstrated for the Polycomb group gene MEDEA (MEA) and for FWA. Direct repeats upstream of FWA are subject to DNA(More)
Fertilization in flowering plants initiates the development of the embryo and endosperm, which nurtures the embryo. A few genes subjected to imprinting are expressed in endosperm from their maternal allele, while their paternal allele remains silenced. Imprinting of the FWA gene involves DNA methylation. Mechanisms controlling imprinting of the Polycomb(More)
We use Arabidopsis thaliana as a model to investigate coordination of cell proliferation and cell elongation in the three components that develop side by side in the seed. Two of these, the embryo and its nurturing annex, the endosperm, are placed under zygotic control and develop within the seed integument placed under maternal control. We show that(More)
In flowering plants, maternal seed integument encloses the embryo and the endosperm, which are both derived from double fertilization. Although the development of these three components must be coordinated, we have limited knowledge of mechanisms involved in such coordination. The endosperm may play a central role in these mechanisms as epigenetic(More)
The formation of the root epidermis in Arabidopsis thaliana provides a simple model to study mechanisms underlying patterning in plants. In this paper we have analyzed the relationships between cell fate specification and the pattern of cell division that occur in the root epidermis. Using clonal analysis, the two cell types of the developing root(More)
Sexual reproduction involves epigenetic reprogramming comprising DNA methylation and histone modifications. In addition, dynamics of HISTONE3 (H3) variant H3.3 upon fertilization are conserved in animals, suggesting an essential role. In contrast to H3, H3.3 marks actively transcribed regions of the genome and can be deposited in a replication-independent(More)
In contrast to animals, the plant male germline is established after meiosis in distinctive haploid structures, termed pollen grains. The germline arises by a distinct asymmetric division of the meiotic products . The fates of the resulting vegetative and generative cells are distinct. In contrast to the larger vegetative cell, arrested in the G1 phase of(More)
TOR (target of rapamycin) protein kinases were identified in yeasts, mammals, and Drosophila as central controllers of cell growth in response to nutrient and growth factors. Here we show that Arabidopsis thaliana possesses a single TOR gene encoding a protein able to complex with yeast 12-kDa FK506-binding protein and rapamycin despite the insensitivity of(More)