Learn More
Devices for continuous glucose monitoring (CGM) are currently a major focus of research in the area of diabetes management. It is envisioned that such devices will have the ability to alert a diabetes patient (or the parent or medical care giver of a diabetes patient) of impending hypoglycemic/hyperglycemic events and thereby enable the patient to avoid(More)
In recent years, a variety of biomaterial implantable devices has been developed. Of particular significance to pharmaceutical sciences is the progress made on the development of drug/implantable device combination products. However, the clinical application of these devices is still a critical issue due to the host response, which results from both the(More)
In recent years, a variety of devices (drug-eluting stents, artificial organs, biosensors, catheters, scaffolds for tissue engineering, heart valves, etc.) have been developed for implantation into patients. However, when such devices are implanted into the body, the body can react to these in a number of different ways. These reactions can result in an(More)
Biofouling and tissue inflammation present major challenges toward the realization of long-term implantable glucose sensors. Following sensor implantation, proteins and cells adsorb on sensor surfaces to not only inhibit glucose flux but also signal a cascade of inflammatory events that eventually lead to permeability-reducing fibrotic encapsulation. The(More)
Dexamethasone loaded PLGA microsphere/PVA hydrogel composites were investigated as an outer drug-eluting coating for implantable devices to provide protection against the foreign body response. Two populations of microspheres were prepared: 25 kDa PLGA microspheres which had a typical triphasic release profile extending over 30-33 days; and 75 kDa PLGA(More)
The development of zero-order release systems capable of delivering drug(s) over extended periods of time is deemed necessary for a variety of biomedical applications. We hereby describe a simple, yet versatile, delivery platform based on physically cross-linked poly(vinyl alcohol) (PVA) microgels (cross-linked via repetitive freeze/thaw cycling) containing(More)
BACKGROUND Continuous release of dexamethasone from PLGA microsphere/PVA hydrogel composites has been shown to suppress the inflammatory tissue reaction in response to subcutaneously implanted foreign material for a period of one month. The scope of the present work is to investigate whether suppressing the initial acute inflammatory phase with fast(More)
The development of implantable biosensors for continuous monitoring of metabolites is an area of sustained scientific and technological interests. On the other hand, nanotechnology, a discipline which deals with the properties of materials at the nanoscale, is developing as a potent tool to enhance the performance of these biosensors. This article reviews(More)
The unique electronic and optical properties of carbon nanotubes, in conjunction with their size and mechanically robust nature, make these nanomaterials crucial to the development of next-generation biosensing platforms. In this Review, we present recent innovations in carbon nanotube-assisted biosensing technologies, such as DNA-hybridization,(More)