Folusho T Oyerokun

We don’t have enough information about this author to calculate their statistics. If you think this is an error let us know.
Learn More
A microscopic integral equation theory of elasticity in polymer liquids and networks is developed which addresses the nonclassical problem of the consequences of interchain repulsive interactions and packing correlations on mechanical response. The theory predicts strain induced softening, and a nonclassical intermolecular contribution to the linear(More)
A microscopic polymer liquid-state theory has been developed for the structure, thermodynamics and mechanical properties of strained liquid crystalline elastomers. The theory captures the experimentally observed phenomenon of spontaneous distortion and establishes a direct correlation between it and the nematic order parameter. Strain induced softening of(More)
A mode coupling theory for the ideal glass transition temperature, or crossover temperature to highly activated dynamics in the deeply supercooled regime, T(c), has been developed for anisotropic polymer liquids. A generalization of a simplified mode coupling approach at the coarse-grained segment level is employed which utilizes structural and(More)
A microscopic integral equation theory of the segmental orientational order parameter, structural correlations and thermodynamics of strained polymer solutions, melts and networks has been developed. The nonclassical problem of the consequences of intermolecular excluded volume repulsions and chain connectivity is addressed. The theory makes several novel(More)
We have developed a simple model to quantify the effect of solvent selectivity on the surface composition of two-component self-assembled monolayers formed from solutions containing mixtures of organic thiols. The coarse-grained molecular model incorporates the relevant intermolecular interactions in the solution and monolayer to yield an expression for the(More)
  • 1