Learn More
For social beings like humans, detecting one's own and others' errors is essential for efficient goal-directed behavior. Although one's own errors are always negative events, errors from other persons may be negative or positive depending on the social context. We used neuroimaging to disentangle brain activations related to error and reward processing, by(More)
How humans understand the intention of others' actions remains controversial. Some authors have suggested that intentions are recognized by means of a motor simulation of the observed action with the mirror-neuron system [1-3]. Others emphasize that intention recognition is an inferential process, often called "mentalizing" or employing a "theory of mind,"(More)
Motor imagery is widely used to study cognitive aspects of the neural control of action. However, what is exactly simulated during motor imagery is still a matter of debate. On the one hand, it is conceivable that motor imagery is an embodied cognitive process, involving a simulation of movements of one's own body. The alternative possibility is that,(More)
In neurodegenerative disorders, neural damage can trigger compensatory mechanisms that minimize behavioural impairments. Here, we aimed at characterizing cerebral compensation during motor imagery in Parkinson's disease (PD), while controlling for altered motor execution and sensory feedback. We used a within-patient design to compare the most and least(More)
Prestimulus oscillatory neural activity in the visual cortex has large consequences for perception and can be influenced by top-down control from higher-order brain regions. Making a causal claim about the mechanistic role of oscillatory activity requires that oscillations be directly manipulated independently of cognitive instructions. There are(More)
Our perception is facilitated if we know where and when a sensory stimulus will occur. This phenomenon is accounted for by spatial and temporal orienting of attention. Whereas spatial orienting of attention has repeatedly been shown to involve spatially specific modulations of ongoing oscillations within sensory cortex, it is not clear to what extent(More)
Repetition suppression in fMRI studies is generally thought to underlie behavioural facilitation effects (i.e., priming) and it is often used to identify the neuronal representations associated with a stimulus. However, this pays little heed to the large number of repetition enhancement effects observed under similar conditions. In this review, we identify(More)
Twelve right-handed men performed two mental rotation tasks and two control tasks while whole-head functional magnetic resonance imaging was applied. Mental rotation tasks implied the comparison of different sorts of stimulus pairs, viz. pictures of hands and pictures of tools, which were either identical or mirror images and which were rotated in the plane(More)
Chronic fatigue syndrome (CFS) is a disabling disorder, characterized by persistent or relapsing fatigue. Recent studies have detected a decrease in cortical grey matter volume in patients with CFS, but it is unclear whether this cerebral atrophy constitutes a cause or a consequence of the disease. Cognitive behavioural therapy (CBT) is an effective(More)
The posterior parietal cortex (PPC) is known to be involved in the control of automatic movements that are spatially guided, such as grasping an apple. We considered whether the PPC might also contribute to the performance of visuomotor associations in which stimuli and responses are linked arbitrarily, such as producing a certain sound for a typographical(More)