Floris P J T Rutjes

Learn More
The advent of chemical biology tools for imaging and tracking of biomolecules (proteins, lipids, glycans) in their native environment is providing unique insights into cellular processes that are not achievable with traditional biochemical or molecular biology tools. Bioorthogonal labeling of biomolecules has proven particularly useful for the detection and(More)
The effective treatment of brain-related diseases is severely hampered by the presence of the blood–brain barrier (BBB), a polarized layer of endothelial cells that physically separates blood from brain tissue. Besides being able to cross the BBB, drugs must display sufficient stability and bioavailability. Once drugs have reached the brain side, they are(More)
A strained aza-dibenzocyclooctyne was prepared via a high-yielding synthetic route. Copper-free, strain-promoted click reaction with azides showed excellent kinetics, and a functionalised aza-cyclooctyne was applied in fast and efficient PEGylation of enzymes.
Covalently bound azide on a (small) organic molecule or a (large) biomolecular structure has proven an important handle for bioconjugation. Azides are readily introduced, small, and stable, yet undergo smooth ligation with a range of reactive probes under mild conditions. In particular, the potential of azides to undergo metal-free reactions with strained(More)
A procedure is presented for copper(I)-catalyzed [3+2] cycloaddition of nucleosides and nucleotides in near-quantitative yield. Azido-alkyne cycloaddition was applied for the preparation of a range of adenosine dimers and derivatives with versatile functionality, as well as for the smooth condensation of two oligonucleotide strands. The described technology(More)
A microfluidic high-resolution NMR flow probe based on a novel stripline detector chip is demonstrated. This tool is invaluable for the in situ monitoring of reactions performed in microreactors. As an example, the acetylation of benzyl alcohol with acetyl chloride was monitored. Because of the uncompromised (sub-Hz) resolution, this probe holds great(More)
SABRE is a nuclear spin hyperpolarization technique based on the reversible association of a substrate molecule and para-hydrogen (p-H2) to a metal complex. During the lifetime of such a complex, generally fractions of a second, the spin order of p-H2 is transferred to the nuclear spins of the substrate molecule via a transient scalar coupling network,(More)
When dealing with trace analysis of complex mixtures, NMR suffers from both low sensitivity and signal overlap. NMR chemosensing, in which the association between an analyte and a receptor is "signaled" by an NMR response, has been proposed as a valuable analytical tool for biofluids and natural extracts. Such chemosensors offer the possibility to(More)
Nuclear magnetic resonance is often the technique of choice in chemical analysis because of its sensitivity to molecular structure, quantitative character, and straightforward sample preparation. However, determination of trace analytes in complex mixtures is generally limited by low sensitivity and extensive signal overlap. Here, we present an approach for(More)