Florian Zickfeld

Learn More
It is known that graphs on n vertices with minimum degree at least 3 have spanning trees with at least n/4 + 2 leaves and that this can be improved to (n + 4)/3 for cubic graphs without the diamond K 4 − e as a subgraph. We generalize the second result by proving that every graph with minimum degree at least 3, without diamonds and certain subgraphs called(More)
In this paper we study connections between planar graphs, Schnyder woods, and orthogonal surfaces. Schnyder woods and the face counting approach have important applications in graph drawing and the dimension theory of orders. Orthogonal surfaces explain connections between these seemingly unrelated notions. We use these connections for an intuitive proof of(More)
We deal with the asymptotic enumeration of combinatorial structures on planar maps. Prominent instances of such problems are the enumeration of spanning trees, bipartite perfect matchings, and ice models. The notion of orientations with out-degrees prescribed by a function α : V → N unifies many different combinatorial structures, including the afore(More)
  • 1