Florian Wagner

Learn More
Several interpretations and implementations of the IEC 61499 standard have been published. The interpretations have been made with a certain desired run-time behavior in mind. One group of interpretations focuses on providing a well analyzable behavior whereas the others have been proposed to increase runtime performance. However, there has not been an(More)
In ab initio calculations of electronic structures, total energies, and forces, it is convenient and often even necessary to employ a broadening of the occupation numbers. If done carefully, this improves the accuracy of the calculated electron densities and total energies and stabilizes the convergence of the iterative approach towards self-consistency.(More)
We present the first direct experimental test of the complex ion structure in liquid carbon at pressures around 100 GPa, using spectrally resolved x-ray scattering from shock-compressed graphite samples. Our results confirm the structure predicted by ab initio quantum simulations and demonstrate the importance of chemical bonds at extreme conditions similar(More)
Neutrons are unique particles to probe samples in many fields of research ranging from biology to material sciences to engineering and security applications. Access to bright, pulsed sources is currently limited to large accelerator facilities and there has been a growing need for compact sources over the recent years. Short pulse laser driven neutron(More)
We present a study of laser-driven ion acceleration with micrometer and submicrometer thick plastic targets. Using laser pulses with high temporal contrast and an intensity of the order of 10^{20}  W/cm^{2} we observe proton beams with cutoff energies in excess of 85 MeV and particle numbers of 10^{9} in an energy bin of 1 MeV around this maximum. We show(More)
The question of the statistical accuracy of EBSD data for global texture calculation was re-explored on the basis of a very large grain population (83 000 grains measured on a recrystallized low-alloyed Zr sheet). Previous works aimed mainly at identifying and quantifying the main texture components and were based on much smaller data sets. The present work(More)
We used time-resolved shadowgraphy to characterize the pre-plasma formation in solid-target interaction experiments with micrometer-scale accuracy. We performed quantitative measurements of the plasma density for amplified spontaneous emission (ASE) levels ranging from 2 · 10(-7) to 10(-10) backed with 2-dimensional hydrodynamic simulations. We find that(More)
We apply Fourier-transform spectral interferometry (FTSI) to study the interaction of intense laser pulses with ultrathin targets. Ultrathin submicrometer-thick solid CH targets were shot at the PHELIX laser facility with an intensity in the mid to upper 10^{19}  W/cm^{2} range using an innovative double-pulse structure. The transmitted pulse structure was(More)
The energy deposition of ions in dense plasmas is a key process in inertial confinement fusion that determines the α-particle heating expected to trigger a burn wave in the hydrogen pellet and resulting in high thermonuclear gain. However, measurements of ion stopping in plasmas are scarce and mostly restricted to high ion velocities where theory agrees(More)
A technique for the creation of free-standing cryogenic targets for laser-driven ion acceleration is presented, which allows us to create solid state targets consisting of initially gaseous materials. In particular, the use of deuterium and the methods for its preparation as a target material for laser-driven ion acceleration are discussed. Moving in the(More)